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Time Complexity
Definition
Let M be any deterministic Turing machine 
that halts on all inputs.
The running time or time complexity of M 
is the function f:N→N, where f(n) is the 
maximum number of steps that M uses 
on any input of length n.



The running time or time complexity of M 
is the function f:N→N, where f(n) is the 
maximum number of steps that M uses 
on any input of length n.

Time Complexity Class

Definition
Let t:N→N be a function.
The time complexity class, TIME(t(n)), is

TIME(t(n)) = {L | L is a language decided 
an O(t(n))-time Turing Machine}



Time Complexity for TMs
Relationship of time complexity for 
different TM models
If a problem can be solved in O(t(n)) time 
on a multi-tape TM, it can be solved in 
O(t2(n)) time on a single-tape TM
If a problem can be solved in O(t(n)) time 
on a nondeterministic TM, it can be solved 
in 2O(t(n)) time on a deterministic TM

multi-tape TM

nondeterministic TM



Polynomial vs. Exponential Time
We distinguish between algorithms that have 
polynomial running time and those that have 
exponential running time

• Assume a single tape deterministic TM

Polynomial functions – even ones with large 
exponents – grow less quickly than 
exponential functions
We can only process large data sets with 
polynomial running time algorithms



The Class P
P is the class of languages that are 
decidable in polynomial time on a 
single‑tape Turing machine
P = ∪k TIME(nk)

P “roughly corresponds” to the problems 
that are realistically solvable on a computer



Solving vs. verifyingSolving vs. Verifying
What if we don’t know how to solve the 

problem in O(nk) time?

Given a problem and a potential 
solution, can we verify the solution 
is correct?



Example
The bin-packing problem

• Given a set of n items with fractional 
weights w1, w2, …, wn, and k bins that can 
hold a maximum weight of 1 each, can we 
place these items into the bins?

There is no known O(nk) solution to this 
problem
What if we have a potential solution

• b1, b2, …, bn 1≤ bi ≤ k

Can we verify it in O(nk) time?
bi indicates the bin for item i



Verifier
M = “On input <w1, …, wn, b1, …, bn, k>

1. Initialize s1, s2, …, sk to 0 
2. For i = 1, …, n
3.    if bi ∉ {1, 2, …, k} Reject
4.    sbi = sbi + wi

5.    if sbi > 1 Reject
6. Next i
7. Accept



The Class NP
Definition:  A verifier  for a language A is 
an algorithm V, where
A={w | V accepts <w,c> for some string c}
The string c is called a certificate of 
membership in A.
Definition:  NP is the class of languages 
that have polynomial-time verifiers.



Why NP?
NP problems have polynomial-time solutions 
on nondeterministic TMs.
The N in NP stands for  

non-deterministic
Any language in NP can be non-deterministically 
solved in polynomial time using the verifier

• Guess the certificate
• Verify



Example
Find a verifier for the traveling-salesperson 
problem

Berlin 
Bremen 
Dresden 
Düsseldorf 
Frankfurt 
Hamburg 
Hannover 
Köhn 
Leipzig 
Munchan 
Nümberg 
Stuttgart

A 
B 
C 
D 
E 
F

Hamburg→Bremen→Hannover→Düsseldorf
→Köhn→Frankfurt→Stuttgart→Munchan→
Nümberg→Dresden→Berlin→Hamburg

d ?= 54 

d ?= 59

d ?= 2735km



Example
Find a verifier for the traveling-salesperson 
problem

• Given a weighted graph G (where each Edge 
has an associated weight) and a distance d, 
does there exist a cycle through the graph that 
visits each Vertex exactly once (except for the 
start/end vertex) and has a total distance d?

Berlin 
Bremen 
Dresden 
Düsseldorf 
Frankfurt 
Hamburg 
Hannover 
Köhn 
Leipzig 
Munchan 
Nümberg 
Stuttgart

A 
B 
C 
D 
E 
F

d ?= 54 

d ?= 59

d ?= 2735km



Example (continued)
Find a verifier for the traveling-salesperson 
problem
Verifier takes input <vi1,vi2,…,vin>  vik∈V

Check that the input is a permutation of the 
nodes of the graph

• O( |V|2 )

Check that the sum of the edges between 
adjacent vik is equal to d

• O( |E| × |V| )



Example: Colorability
The 3-Color Problem

• INPUT: Graph G with vertices V and edges E
• PROPERTY: There is a function ƒ:N→{1,2,3}

such that if u and v are adjacent then ƒ(u) ≠ ƒ(v)

Determine if the graph can be colored 
using at most 3 colors such that no two 
adjacent vertices are given the same color. 1

1
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2

2

3

3

3
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Verifiable in polynomial time

Color the vertices of a graph such that no two adjacent vertices share the same color.



The Class co-NP
 ∈ co-NP  ⟺   ∈ NPL L

NP: A language L is in NP if and only if a qualifying 
certificate can be checked efficiently.

co-NP: A language L is in co-NP if and only if a 
disqualifying certificate can be checked efficiently.

A language is in co-NP if and only if 
its complement is in NP.

For example,

= {⟨G⟩ | G is a graph that cannot be colored using only 3 colors}3-Color



Is NP closed under complementation?
The 3-Color problem is in NP.
What about ?3-Color
Can we verify in polynomial time that a 
graph cannot be 3-colored?

• Not obviously
• It seems we need to check many 3-colorings 

before we can conclude that none exist



What we know

NP
P coNP



What we don’t know

NP
P coNP

Are there any problems here?



Who wants $1,000,000?
In May, 2000, the Clay Mathematics Institute 
named seven open problems in 
mathematics the Millennium Problems

• Anyone who solves any of these problems will 
receive $1,000,000

• Proving whether or not P equals NP is one of 
these problems

http://www.claymath.org/millennium-problems/p-vs-np-problem



Solving NP Problems
The best-known methods for solving 
problems in NP that are not known 
to be in P take exponential time

Brute force search



NP-completeness
A problem C is NP-complete if finding a 
polynomial-time solution for C would 
imply P=NP

Definition: Language B is NP-complete 
if it satisfies two conditions:
•B is in NP, and
•Every A in NP is polynomial time reducible to B



Reductions and NP-completeness
If we can prove an NP-complete problem C 
can be polynomially reduced to a problem 
A, then we’ve shown A is NP-complete

• A polynomial-time solution to A would provide 
a polynomial-time solution to C, which would 
imply P=NP



Polynomial Reductions
Definition:  Language A is polynomial-time 
reducible to language B, written A ≤P B, if a 
polynomial time computable function 
f:Σ*→Σ* exists, where for every w

w ∈ A  ⇔  f(w) ∈ B

f

f

A B



Reductions & NP-completeness
Theorem:  If A ≤P B and B ∈ P, then A ∈ P

Proof:  Let M be the polynomial time 
algorithm that decides B and let f be the 
polynomial reduction from A to B.  
Consider the TM N
N = “On input w

• Compute f(w)
• Run M on f(w) and output M’s result”

Then N decides A in polynomial time.



Implications of NP-completeness
Theorem:  If B is NP-complete and B ∈ P, 
then P = NP.

Theorem:  If B is NP-complete and B ≤P C 
for some C in NP, then C is NP-complete



Two steps to proving a problem L is 
NP‑complete

• Show the problem is in NP
• Demonstrate there is a polynomial time verifier for 

the problem
• Show some NP‑complete problem can be 

polynomially reduced to L

Showing a Problem is NP-complete

https://en.wikipedia.org/wiki/List_of_NP-complete_problems



Summary
To show a language L is NP-complete

• Demonstrate L is in NP
• Find a language C that is known to be 

NP‑complete
• Create a function ƒ from C to L
• Demonstrate that if x is in C then ƒ(x) is in L
• Demonstrate that if ƒ(x) is in L then x is in C
• Demonstrate ƒ is computable in polynomial 

time



Course Recap — Goals
Explore the capabilities and limitations of 
computers

• Automata theory
• How can we mathematically model computation?

• Computability theory
• What problems can be solved by a computer?

• Complexity theory
• What makes some problems computationally hard 

and others easy?



Course Recap
Automata Theory

• Introduced DFA, NFA, Regular Grammar, RE
• Showed that they all accept the same class of 

languages
• Introduced CFG, PDA

• PDA is essentially an NFA with a stack
• PDAs and CFGs accept the same class of languages

✔



Course Recap
Computability Theory

• Introduced TM
• Like PDA’s with more general memory model

• Importance of TM
• Church-Turing Thesis
• Any algorithm can be implemented on a TM

• Use the TM model and Church‑Turing Thesis 
to understand and classify languages
• Decidable languages
• Undecidable languages
• Recognizable languages
• Unrecognizable languages
• Complements of languages in these classes

✔



Course Recap
Complexity Theory

• Use TM model to determine how long an 
algorithm takes to run
• Function of input length

• Classify algorithms according to their 
complexity

• Deciders vs Verifiers
• P ,  NP ,  NP-completeness

✔


