Introduction to the Theory of Computation

Set 11 – Complexity (2)

Time Complexity

Definition

Let M be any deterministic Turing machine that halts on all inputs.

The <u>running time</u> or <u>time complexity</u> of M is the function $f:\mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M uses on any input of length n.

Time Complexity Class

The running time or time complexity of M is the function $f:\mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of steps that M uses on any input of length n.

Definition

Let $t: \mathbb{N} \rightarrow \mathbb{N}$ be a function.

The time complexity class, TIME(t(n)), is

TIME(t(n)) = {L | L is a language decided an O(t(n))-time Turing Machine}

Time Complexity for TMs Relationship of time complexity for different TM models

If a problem can be solved in O(t(n)) time on a multi-tape TM, it can be solved in O(t²(n)) time on a single-tape TM

If a problem can be solved in O(t(n)) time on a nondeterministic TM, it can be solved in 2^{O(t(n))} time on a deterministic TM

Polynomial vs. Exponential Time

We distinguish between algorithms that have polynomial running time and those that have exponential running time

Assume a single tape deterministic TM

Polynomial functions – even ones with large exponents – grow less quickly than exponential functions

We can only process <u>large data sets</u> with polynomial running time algorithms

The Class P

P is the class of languages that are *decidable* in *polynomial time* on a single-tape Turing machine

 $\mathbf{P} = \cup_{\mathbf{k}} \mathbf{TIME}(\mathbf{n}^{\mathbf{k}})$

P "roughly corresponds" to the problems that are realistically solvable on a computer Solving vs. Verifying What if we don't know how to solve the problem in O(n^k) time?

Given a problem and a potential solution, can we verify the solution is correct?

Example

The bin-packing problem

- Given a set of n items with fractional weights w₁, w₂, ..., w_n, and k bins that can hold a maximum weight of 1 each, can we place these items into the bins?
- There is no known O(n^k) solution to this problem
- What if we have a potential solution
 - $b_1, b_2, ..., b_n 1 \le b_i \le k$ b_i indicates the bin for item i

Can we verify it in O(n^k) time?

Verifier

- M = "On input <w₁, ..., w_n, b₁, ..., b_n, k>
 - **1. Initialize** s_1 , s_2 , ..., s_k to 0
 - 2. For i = 1, ..., n
 - 3. if $b_i \not\in \{1, 2, ..., k\}$ Reject
 - 4. $S_{b_i} = S_{b_i} + W_i$
 - 5. if $s_{b_i} > 1$ Reject
 - 6. Next i
 - 7. Accept

The Class NP

Definition: A *verifier* for a language A is an algorithm V, where

- A={w | V accepts <w,c> for some string c}
- The string c is called a certificate of membership in A.

Definition: NP is the class of languages that have polynomial-time verifiers.

Why NP?

- NP problems have polynomial-time solutions on nondeterministic TMs.
- The N in NP stands for non-deterministic
- Any language in NP can be non-deterministically solved in polynomial time using the verifier
 - Guess the certificate
 - Verify

Example

Find a verifier for the traveling-salesperson problem

Berlin Bremen Dresden Düsseldorf Frankfurt Hamburg Hannover Köhn Leipzig Munchan Nümberg Stuttgart

Example

Find a verifier for the traveling-salesperson problem

 Given a weighted graph G (where each Edge has an associated weight) and a distance d, does there exist a cycle through the graph that visits each Vertex exactly once (except for the start/end vertex) and has a total distance d?

Berlin Bremen Dresden Düsseldorf Frankfurt Hamburg Hannover Köhn Leipzig Munchan Nümberg Stuttgart

Example (continued)

- Find a verifier for the traveling-salesperson problem
- Verifier takes input $\langle v_{i_1}, v_{i_2}, ..., v_{i_n} \rangle v_{i_k} \in V$
- Check that the input is a permutation of the nodes of the graph
 - O(IVI²)
- Check that the sum of the edges between adjacent v_{i_k} is equal to d
 - O(|E| × |V|)

Example: Colorability

Color the vertices of a graph such that no two adjacent vertices share the same color.

The 3-Color Problem

- INPUT: Graph G with vertices V and edges E
- PROPERTY: There is a function $f:\mathbb{N} \rightarrow \{1, 2, 3\}$ such that if *u* and *v* are adjacent then $f(u) \neq f(v)$

Determine if the graph can be colored using **at most 3** colors such that no two adjacent vertices are given the same color.

Verifiable in polynomial time

The Class co-NP $L \in \text{co-NP} \iff \overline{L} \in \text{NP}$

A language is in co-NP if and only if its complement is in NP.

For example,

 $\overline{3\text{-Color}} = \{\langle G \rangle \mid G \text{ is a graph that$ **cannot** $be colored using only 3 colors} \}$

NP: A language L is in NP if and only if a *qualifying* certificate can be checked efficiently.

co-NP: A language L is in co-NP if and only if a *disqualifying* certificate can be checked efficiently.

Is NP closed under complementation?

The 3-Color problem is in NP. What about 3-Color?

Can we *verify* in polynomial time that a graph <u>cannot</u> be 3-colored?

- Not obviously
- It seems we need to check many 3-colorings before we can conclude that none exist

What we know

What we don't know

Who wants \$1,000,000?

In May, 2000, the Clay Mathematics Institute named seven open problems in mathematics the Millennium Problems

- Anyone who solves any of these problems will receive \$1,000,000
- Proving whether or not P equals NP is one of these problems

http://www.claymath.org/millennium-problems/p-vs-np-problem

Solving NP Problems

The best-known methods for solving problems in NP that are not known to be in P take exponential time

Brute force search

NP-completeness

A problem C is NP-complete if finding a polynomial-time solution for C would imply P=NP

- Definition: Language B is NP-complete if it satisfies two conditions:
- •B is in NP, and
- Every A in NP is polynomial time reducible to B

Reductions and NP-completeness

If we can prove an NP-complete problem C can be polynomially reduced to a problem A, then we've shown A is NP-complete

 A polynomial-time solution to A would provide a polynomial-time solution to C, which would imply P=NP

Polynomial Reductions

Definition: Language A is polynomial-time reducible to language B, written A \leq_P B, if a polynomial time computable function f: $\Sigma^* \rightarrow \Sigma^*$ exists, where for every w

 $w \in A \Leftrightarrow f(w) \in B$

Reductions & NP-completeness Theorem: If $A \leq_P B$ and $B \in P$, then $A \in P$

Proof: Let M be the polynomial time algorithm that decides B and let f be the polynomial reduction from A to B. Consider the TM N

N = "On input w

- Compute f(w)
- Run M on f(w) and output M's result"

Then N decides A in polynomial time.

Implications of NP-completeness Theorem: If B is NP-complete and $B \in P$, then P = NP.

Theorem: If B is NP-complete and $B \leq_P C$ for some C in NP, then C is NP-complete

Showing a Problem is NP-complete

Two steps to proving a problem L is NP-complete

- Show the problem is in NP
 - Demonstrate there is a polynomial time verifier for the problem
- Show some NP-complete problem can be polynomially reduced to L

https://en.wikipedia.org/wiki/List_of_NP-complete_problems

Summary

- To show a language L is NP-complete
 - Demonstrate L is in NP
 - Find a language C that is known to be NP-complete
 - Create a function *f* from C to L
 - Demonstrate that if x is in C then f(x) is in L
 - Demonstrate that if f(x) is in L then x is in C
 - Demonstrate *f* is computable in polynomial time

Course Recap — Goals

Explore the capabilities and limitations of computers

- Automata theory
 - How can we mathematically model computation?
- Computability theory
 - What problems can be solved by a computer?
- Complexity theory
 - What makes some problems computationally hard and others easy?

Course Recap

Automata Theory 🖌

- Introduced DFA, NFA, Regular Grammar, RE
 - Showed that they all accept the same class of languages
- Introduced CFG, PDA
 - PDA is essentially an NFA with a stack
 - PDAs and CFGs accept the same class of languages

Course Recap

Computability Theory

- Introduced TM
 - Like PDA's with more general memory model
- Importance of TM
 - Church-Turing Thesis
 - Any algorithm can be implemented on a TM
- Use the TM model and Church-Turing Thesis
 to understand and classify languages
 - Decidable languages
 - Undecidable languages
 - Recognizable languages
 - Unrecognizable languages
 - Complements of languages in these classes

Course Recap

Complexity Theory

- Use TM model to determine how long an algorithm takes to run
 - Function of input length
- Classify algorithms according to their complexity
- Deciders vs Verifiers
- P, NP, NP-completeness