
 
Introduction to the  

Theory of Computation

Set 10 — Complexity (1)

Complexity of Algorithms
Among decidable problems, we still have
levels of difficulty for algorithms
We may consider an algorithm more
difficult for a variety of reasons

• Takes longer to execute
• Requires more memory to execute

Time complexity: Given an algorithm and
an input string, how long will the
algorithm take to execute?

Example
INSERTION-SORT(A)
1. For j = 2 to length(A)
2. key := A[j]
3. i := j-1
4. While i > 0 and A[i] > key
5. A[i+1] := A[i]
6. i := i-1
7. A[i+1] := key

Trace
4 6 1 8 5 3

• Start by looking at 6 & compare to 4
• 4 ≤ 6
• Next look at 1

1 4 6 8 5 3
• 8 is okay
• Move 5 then move 3

1 4 5 6 8 3
1 3 4 5 6 8

INSERTION-SORT(A)
1. For j = 2 to length(A)
2. key := A[j]
3. i := j-1
4. While i > 0 and A[i] > key
5. A[i+1] := A[i]
6. i := i-1
7. A[i+1] := key

How long does insertion sort take?
Two loops
Outer loop executed (n-1) times

n = length(A)

Inner loop executed up to j times
Total time is at most ∑1≤k<n (4+∑1≤i<k 3)

∑1≤k<n 4+∑ 1≤k<n 3k
4(n-1) + 3[(n+1)n/2-1] =
4n- 4 + 1.5 n2 + 1.5 n – 2 =
1.5 n2 + 5.5 n – 6

INSERTION-SORT(A)
1. For j = 2 to length(A)
2. key := A[j]
3. i := j-1
4. While i > 0 and A[i] > key
5. A[i+1] := A[i]
6. i := i-1
7. A[i+1] := key

Big-O Notation
In general, the time complexity will be a
sum of terms that is dominated by one term

• For example, n2 + 2n – 3 is dominated by the
n2 term

Time complexity is most concerned with
behavior for large n

• We disregard all terms except for the
dominating term

• n2 + 2n – 3 = O(n2)

Asymptotic Upper Bound
Definition: Let f and g be two functions

from ℕ (natural numbers) to R+ (positive real
numbers).

Then f(n)=O(g(n)) if positive integers c
and n0 exist such that for every n ≥ n0,
f(n) ≤ c × g(n).

In this case, we say that g(n) is an
upper bound for f(n).

Example
3n4 + 5n2 – 4 = O(n4)

3n4 + 5n2 – 4 ≤ 4n4 for every n ≥ 2 since
 3n4 + 5n2 – 4 ≤ 4n4

 ⇒ n4 – 5n2 + 4 ≥ 0
 ⇒ (n2 – 4)(n2 – 1) ≥ 0 clearly holds for all n ≥ 2

For polynomials, we can drop everything
except nk, where k is the largest exponent

Big-O Notation and Logarithms
Recall logbn = logxn / logxb

• logbn = O(logxn) for every x > 0
• With big-O notation, the base of the logarithm

is unimportant!

5n5 log3n – 3n2log2log2n = O(n5 log n)

Mathematics with Big-O Notation

If f(n) = O(n3) + O(n), then f(n) = O(n3)
Can simply select the largest term

What does f(n) = 3O(n) mean?
3O(n) ≥ 3cn for some constant c

How about O(1)?
O(1) ≥ c for some constant c

Constant time

Exponentials
What about f(n) = 2O(log n)?

n = 2log2 n [identity]

nc = 2c log2 n [identity]

nc = 2O(log n) [upper bound of nc for some c]

2O(log n) = nO(1) [equivalent upper bound]

An algorithm takes polynomial time if its
complexity is O(nk) for some k>0

An algorithm takes exponential time if its
complexity is O(ani), where a≥2, i>0

Small-o Notation

Definition: Let f and g be two functions
from N to R+.
Then f(n)=o(g(n))

limn→∞(f(n)/g(n)) = 0

That is, for any positive real number c,
a number n0 exists such that
for every n ≥ n0, f(n) < c × g(n)

Big-O versus Small-o
If f(n) = o(g(n)) then f(n) = O(g(n)), but the
reverse is not always true
Big-O is like “less than or equal” while
small-o is like “strictly less than”

• Example
• f(n) = O(f(n)) for every function f
• f(n) ≠ o(f(n)) for every function f

Some Identities
ni = o(nk) for every i < k
log n = o(n)
log log n = o(log n)

n, log n, log(log n), and n log n

f(n
)

-50.0

12.5

75.0

137.5

200.0

n
0 25 50 75 100

n
log n
log log n
n log n

log n and log log n

f(n
)

-1.250

0.313

1.875

3.438

5.000

n
0 25 50 75 100

log n
log log n

n, n log n, n2, n2 log n
f(n

)

0

5000

10000

15000

20000

n

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899

n
n log n
n^2
n^2 * log n

n, n log n, n2, n2 log n

Small-o vs. Big-O
Small-o is strictly less than
Big-O is less than or equal to
For any function f, is f(n) = o(f(n))?

• No … never!

For any function f, is f(n) = O(f(n))?
• Yes … always!

Analyzing Algorithms

We examine an algorithm to determine how
long it will take to halt on an input of
length n

• The amount of time to complete is called the
algorithm’s complexity class

Definition: Let t:N→N be a function.
The time complexity class, TIME(t(n)), is

TIME(t(n)) = { L | L is a language decided by
an O(t(n))-time algorithm }

Example
Earlier, we saw that insertion sort takes
1.5 n2 + 5.5 n − 6 time
Insertion sort is in the time complexity
class O(n2)
Insertion sort is also in the time complexity
class O(nk) for any k > 2

Importance of Model
The complexity of algorithms is a function
of the length of the input
This length may vary depending on
assumptions about our data and other
model assumptions

Another Example
Finding minimum element in a set
Amount of time depends on the structure of
the input
If set is a sorted array?

• O(1)

If set is an unsorted array?
• O(n)

If set is a balanced sorted tree?

Sorted Tree

8

5

3

12

10 15

Sorted Tree Examined
Finding minimum involves selecting left
child until you reach a leaf

• Number of steps = depth of tree

Since the tree is balanced, the depth of the
tree is O(log n)
What if the tree was not balanced?

Size of Input: Important Consideration
The running time is measured in terms of
the size of the input

• If we increase the input size can that make the
problem seem more efficient

• For example, represent integers in unary
instead of binary

We consider only reasonable encodings
• The space used to encode the integer value v

must be O(log v)

Unary vs. Binary Encoding
In unary encoding, the value 13 is encoded
1111111111111

• Length of encoding of value v is v

In binary encoding, the value 13 is encoded
1101

• Length of encoding of value v is ⎣log2v⎦+1

Why does encoding matter?
Assume an algorithm takes as its input an integer of
value v

What is the time complexity of an algorithm if it takes
integer input with value v and executes for v steps?

• Recall time complexity is a function of the length of the input

If encoding is in unary, the complexity is O(n)

If encoding is binary, the complexity is O(2n)

Example
An important problem in cryptography is
prime factorization

• Most encryptions rely on the fact that prime
factorization takes a long time (exponential in
the length of the input)

Clearly, we can find the prime factorization
of v by checking whether each integer
smaller than v divides it

Prime Factorization

PRIME_FACTOR(v)
w = v
factors = ∅
for i = 2 to v

do while i divides w
w = w / i
factors = factors ∪ {i}

enddo
if w = 1 break

next
Worst case execution time is v

(occurs when v is prime)

factors is a multiset & will contain prime factors

Complexity of Prime Factorization
The algorithm has complexity O(v)

• v is the value of the input

A trickster could claim they have a linear
algorithm simply by changing the
encoding of the input

• If the input is unary, then the factorization is
linear in the length of the input
• But this is cheating!

Enforcing reasonable encodings keeps
this trick from occurring

