# Introduction to the Theory of Computation 

Set 10 - Complexity (1)

## Complexity of Algorithms

Among decidable problems, we still have levels of difficulty for algorithms

We may consider an algorithm more difficult for a variety of reasons

- Takes longer to execute
- Requires more memory to execute

Time complexity: Given an algorithm and an input string, how long will the algorithm take to execute?

## Example

## INSERTION-SORT(A)

1. For $\mathbf{j}=\mathbf{2}$ to length( $\mathbf{A})$
2. key := A[j]
3. $\quad \mathbf{i}:=\mathbf{j}-1$
4. While $\mathbf{i}>\mathbf{0}$ and $\mathbf{A}[i]>$ key
5. $A[i+1]:=A[i]$
6. 

$\mathrm{i}:=\mathrm{i}-1$
7. $A[i+1]:=$ key

## Trace

461853

- Start by looking at 6 \& compare to 4
- $4 \leq 6$
- Next look at 1

146853

- 8 is okay
- Move 5 then move 3

145683
134568

## How long does insertion sort take?

## Two loops

Outer loop executed ( $\mathrm{n}-1$ ) times

$$
\mathrm{n}=\text { length }(\mathrm{A})
$$

## Inner loop executed up to j times

Total time is at most $\sum_{1 \leqslant k<n}\left(4+\sum_{1 \leq i<k} 3\right)$

$$
\begin{aligned}
& \sum_{1 \leq k<n} 4+\sum_{1 \leq k<n} 3 k \\
& 4(\mathrm{n}-1)+3[(\mathrm{n}+1) \mathrm{n} / 2-1]= \\
& 4 n-4+1.5 n^{2}+1.5 n-2= \\
& 1.5 n^{2}+5.5 n-6 \\
& \text { INSERTION-SORT(A) } \\
& \text { 1. For } \mathbf{j}=\mathbf{2} \text { to length(A) } \\
& \text { 2. key :=A[j] } \\
& \text { 3. } \quad i:=j-1 \\
& \text { 4. While } \mathbf{i}>\mathbf{0} \text { and } \mathrm{A}[\mathrm{i}]>\text { key } \\
& A[i+1]:=A[i] \\
& \mathrm{i}:=\mathrm{i}-1 \\
& \text { 7. } A[i+1]:=\text { key }
\end{aligned}
$$

## Big-O Notation

In general, the time complexity will be a sum of terms that is dominated by one term

- For example, $n^{2}+2 n-3$ is dominated by the $\mathrm{n}^{2}$ term

Time complexity is most concerned with behavior for large $n$

- We disregard all terms except for the dominating term
- $\mathrm{n}^{2}+2 \mathrm{n}-3=0\left(\mathrm{n}^{2}\right)$


## Asymptotic Upper Bound

## Definition: Let fand ge two functions

 from $\mathbb{N}$ (natural numbers) to $\mathbb{R}^{+}$(positive real numbers).Then $f(n)=O(g(n))$ if positive integers $c$ and $n_{0}$ exist such that for every $n \geq n_{0}$, $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \times \mathrm{g}(\mathrm{n})$.

In this case, we say that $\mathbf{g}(\mathrm{n})$ is an upper bound for $f(\mathrm{n})$.

## Example

$3 n^{4}+5 n^{2}-4=0(\quad)$
$3 n^{4}+5 n^{2}-4 \leq 4 n^{4}$ for every $n \geq 2$ since
$3 n^{4}+5 n^{2}-4 \leq 4 n^{4}$
$\Rightarrow \mathrm{n}^{4}-5 \mathrm{n}^{2}+4 \geq 0$
$\Rightarrow\left(\mathrm{n}^{2}-4\right)\left(\mathrm{n}^{2}-1\right) \geq 0$ clearly holds for all $\mathrm{n} \geq 2$
For polynomials, we can drop everything except $\mathrm{n}^{\mathrm{k}}$, where k is the largest exponent

## Big-O Notation and Logarithms

Recall $\log _{b} n=\log _{x} n / \log _{x} b$

- $\log _{b} n=O\left(\log _{x} n\right)$ for every $x>0$
- With big-O notation, the base of the logarithm is unimportant!
$5 n^{5} \log _{3} n-3 n^{2} \log _{2} \log _{2} n=O\left(n^{5} \log n\right)$

Mathematics with Big-O Notation
If $f(n)=O\left(n^{3}\right)+O(n)$, then $f(n)=O\left(n^{3}\right)$
Can simply select the largest term
What does $f(n)=30(n)$ mean?

$$
30(\mathrm{n}) \geq 3 \mathrm{cn} \text { for some constant } \mathrm{c}
$$

How about $\mathrm{O}(1)$ ?
$\mathrm{O}(1) \geq \mathrm{c}$ for some constant c
Constant time

## Exponentials

## What about $f(n)=20(\log n)$ ?

$$
\begin{aligned}
& \mathrm{n}=\mathbf{2}^{\log _{2} \mathrm{n}} \text { [identity] } \\
& \mathrm{nc}^{\mathrm{c}}=\mathbf{2 c}{\mathbf{} \log _{2}}^{\mathrm{n}} \text { [identity] } \\
& \mathbf{n c}^{\mathrm{c}}=\mathbf{2 0}(\log \mathrm{n}) \text { [upper bound of } \mathrm{n}^{\mathrm{c}} \text { for some } \mathrm{c} \text { ] } \\
& \mathbf{2 O}^{\mathbf{O}(\log \mathrm{n})}=\mathbf{n} \mathbf{O}^{(1)} \text { [equivalent upper bound] }
\end{aligned}
$$

An algorithm takes polynomial time if its complexity is $\mathbf{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ for some $\mathrm{k}>0$

An algorithm takes exponential time if its complexity is $\mathrm{O}\left(\mathrm{a}^{\left.\mathrm{n}^{i}\right) \text {, where } \mathrm{a} \geq 2, \mathrm{i}>0}\right.$

## Small-o Notation

Definition: Let f and g be two functions from N to $\mathbb{R}^{+}$.

Then $\mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{g}(\mathrm{n})$ )

$$
\lim _{n \rightarrow \infty}(f(n) / g(n))=0
$$

That is, for any positive real number c , a number $n_{0}$ exists such that for every $\mathrm{n} \geq \mathrm{n}_{0}$, $\mathrm{f}(\mathrm{n})<\mathrm{c} \times \mathrm{g}(\mathrm{n})$

## Big-O versus Small-o

If $f(n)=O(g(n))$ then $f(n)=O(g(n))$, but the reverse is not always true
Big-O is like "less than or equal" while small-o is like "strictly less than"

- Example
- $f(n)=O(f(n))$ for every function $f$
- $f(n) \neq 0(f(n))$ for every function $f$


## Some Identities

## $\mathbf{n}^{\mathbf{i}}=\mathbf{o}\left(\mathbf{n}^{k}\right)$ for every $\mathbf{i}<k$

$\log \mathrm{n}=\mathrm{o}(\mathrm{n})$
$\log \log \mathrm{n}=\mathrm{o}(\log \mathrm{n})$

## $n, \log n, \log (\log n)$, and $n \log n$


$\log n$ and $\log \log n$


- $\log n$
- $\log \log n$


## $n, n \log n, n^{2}, n^{2} \log n$


n
$-n$
$-n \log n$

- $n^{\wedge} 2$
$-n^{\wedge} 2 * \log n$


## Small-o vs. Big-O

Small-o is strictly less than
Big-O is less than or equal to
For any function $f$, is $f(n)=o(f(n))$ ?

- No ... never!

For any function $f$, is $f(n)=O(f(n))$ ?

- Yes ... always!


## Analyzing Algorithms

We examine an algorithm to determine how long it will take to halt on an input of length n

- The amount of time to complete is called the algorithm's complexity class
Definition: Let $\mathrm{t}: \mathrm{N} \rightarrow \mathrm{N}$ be a function. The time complexity class, $\operatorname{TIME(t(n))\text {,is}}$
$\operatorname{TIME}(t(n))=\{L I L$ is a language decided by an $\mathrm{O}(\mathrm{t}(\mathrm{n})$ )-time algorithm \}


## Example

Earlier, we saw that insertion sort takes $1.5 \mathrm{n}^{2}+5.5 \mathrm{n}-6$ time

Insertion sort is in the time complexity class $\mathbf{O}\left(\mathrm{n}^{2}\right)$

Insertion sort is also in the time complexity class $\mathbf{O}\left(\mathrm{n}^{k}\right)$ for any $\mathrm{k} \boldsymbol{>} \mathbf{2}$

## Importance of Model

The complexity of algorithms is a function of the length of the input

This length may vary depending on assumptions about our data and other model assumptions

## Another Example

Finding minimum element in a set
Amount of time depends on the structure of the input

If set is a sorted array?

- O(1)

If set is an unsorted array?

- O(n)

If set is a balanced sorted tree?

## Sorted Tree



## Sorted Tree Examined

Finding minimum involves selecting left child until you reach a leaf

- Number of steps = depth of tree

Since the tree is balanced, the depth of the tree is $\mathrm{O}(\log \mathrm{n})$

What if the tree was not balanced?

## Size of Input: Important Consideration

The running time is measured in terms of the size of the input

- If we increase the input size can that make the problem seem more efficient
- For example, represent integers in unary instead of binary

We consider only reasonable encodings

- The space used to encode the integer value v must be $\mathbf{O}(\log \mathrm{v})$


## Unary vs. Binary Encoding

In unary encoding, the value 13 is encoded 111111111111

- Length of encoding of value $\mathbf{v}$ is $\mathbf{v}$

In binary encoding, the value 13 is encoded 1101

- Length of encoding of value $v$ is $\left\lfloor\log _{2} v\right\rfloor+1$


## Why does encoding matter?

Assume an algorithm takes as its input an integer of value v

What is the time complexity of an algorithm if it takes integer input with value $v$ and executes for $v$ steps?

- Recall time complexity is a function of the length of the input

If encoding is in unary, the complexity is $\mathbf{O ( n )}$
If encoding is binary, the complexity is $\mathrm{O}\left(2^{\mathrm{n}}\right)$

## Example

An important problem in cryptography is prime factorization

- Most encryptions rely on the fact that prime factorization takes a long time (exponential in the length of the input)

Clearly, we can find the prime factorization of $v$ by checking whether each integer smaller than v divides it

## Prime Factorization

## PRIME_FACTOR(v)

w = v
factors $=\varnothing$ factors is a multiset \& will contain prime factors for $i=2$ to $v$
do while i divides w
w = w / i
factors = factors $\cup\{i\}$
enddo
if $\mathbf{w}=1$ break Worst case execution time is $v$
next
(occurs when $v$ is prime)

## Complexity of Prime Factorization

The algorithm has complexity $\mathrm{O}(\mathrm{v})$

- $v$ is the value of the input

A trickster could claim they have a linear algorithm simply by changing the encoding of the input

- If the input is unary, then the factorization is linear in the length of the input
- But this is cheating!

Enforcing reasonable encodings keeps this trick from occurring

