Introduction to the Theory of Computation

Set 2 — Regular Languages (1)

Languages

- Alphabet
 - Finite collection of objects (denoted Σ)
- String
 - Concatenation of 0 or more elements of an alphabet
- Language
 - Collection of strings
 - Σ^* is the set of all strings over Σ (including ϵ)

 $\epsilon \triangleq the empty string$

E.length()==0

Deterministic Finite Automata (DFA)

- Method for modeling computers with limited memory
 - Language recognizer
- Idea
 - Keep track of current state
 - Events cause movement from one state to another

Next...

- Formally describe DFA's
- Interpret DFA's

Example — Combination Lock

There are four buttons for user input

a, a, h, a (frog, car, chair, unlock)

- The lock will open if and only if the buttons are pressed in the correct order
- If the unlocking sequence is exactly length 3, there are 256 possible sequences

{ }

In general, for a sequence length k of B buttons, there are B^k unique sequences

Example — Combination Lock

- There are four actions
 , a, h, i (push *frog, car, chair, or unlock*)
- The lock can be in one of these 4 states
 - **RESET** Ready to recognize combination
 - SEEN_FIRST First correct action
 - SEEN_SECOND First+second correct actions
 - UNLOCKED Correct action sequence

State table

Event		<i>\</i>	F	
State				
reset	reset	reset	reset	seen_first
seen_first	reset	reset	seen_second	seen_first
seen_second	reset	reset	reset	unlocked
unlocked	reset	reset	reset	reset

Example – Combination 🔒 🖡 🔒

Stat	e table Event	00	<i>\</i>	F h	
	State				
	reset	reset	reset	reset	seen_first
	seen_first	reset	reset	seen_second	seen_first
	seen_second	reset	reset	reset	unlocked
	unlocked	reset	reset	reset	reset
seen_ first reset seen_ second unlocked					

Deterministic Finite Automaton (DFA) [Formal Definition]

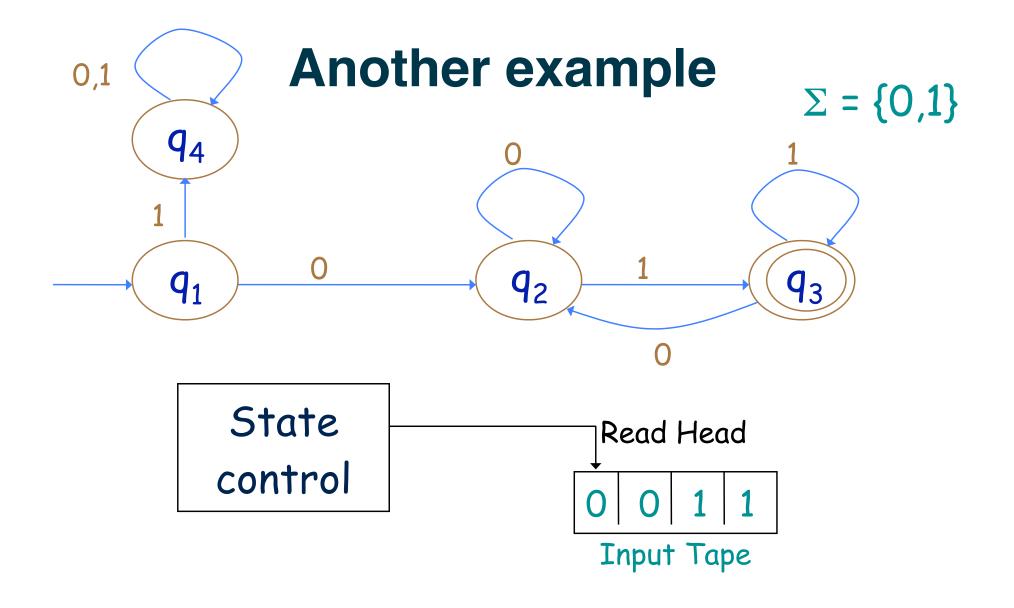
- A deterministic finite automaton (DFA) is a 5-tuple, (Q, Σ , δ ,q₀,F), where
 - Q is a finite set called the states
 - * Σ is a finite set called the alphabet
 - ♦ $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the transition function
 (δ corresponds to the example state change function)
 - q₀ is the start state, and
 - ★ F ⊆ Q is the set of accept states (also called final states).

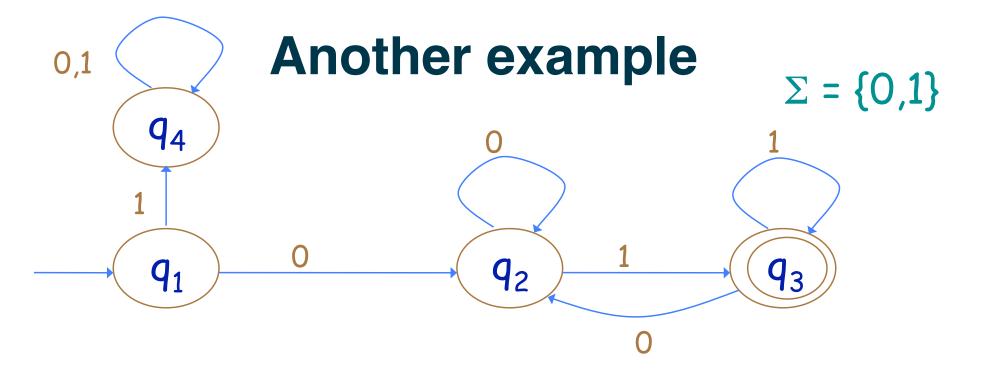
Example

From previous example

- Q = {Reset, Seen_First, Seen_Second, Unlocked}
- $\Sigma = \{ \stackrel{\text{\tiny low}}{\Longrightarrow}, \stackrel{\text{\tiny low}}{\Longrightarrow}, \stackrel{\text{\tiny low}}{\longmapsto}, \stackrel{\text{\tiny low}}{\Longrightarrow} \}$
- δ = The state table we constructed
- $\mathbf{q}_0 = \mathbf{Reset}$
- F = {Unlocked}

Q states Σ alphabet δ transition function Q start state F accept states

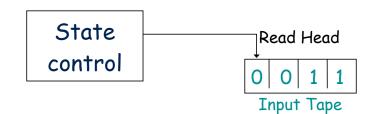




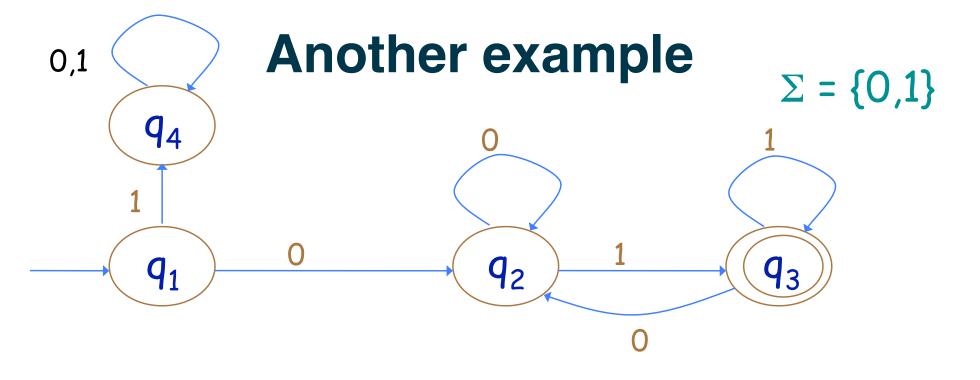
$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

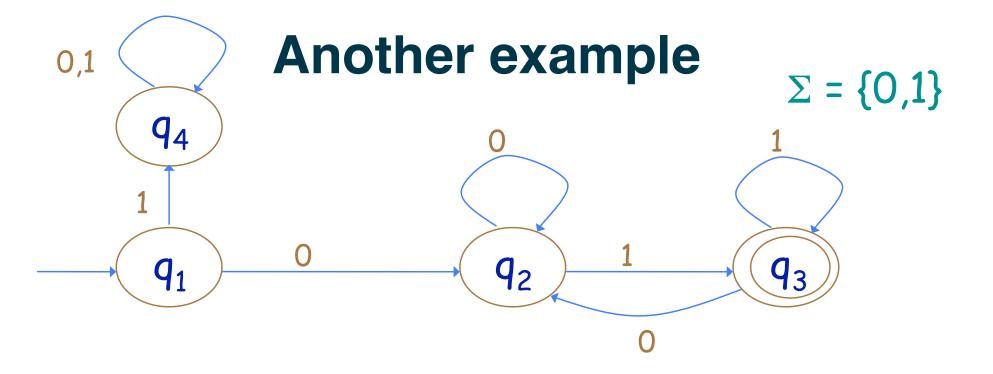
$$\delta$$
 = ...in a moment...



- $q_0 = q_1$ F = { q_3 }



State table	0	1
q ₁	q ₂	q ₄
q ₂	q ₂	q ₃
q ₃	q ₂	q ₃
q ₄	q ₄	q ₄



Informal description of the strings accepted by this DFA

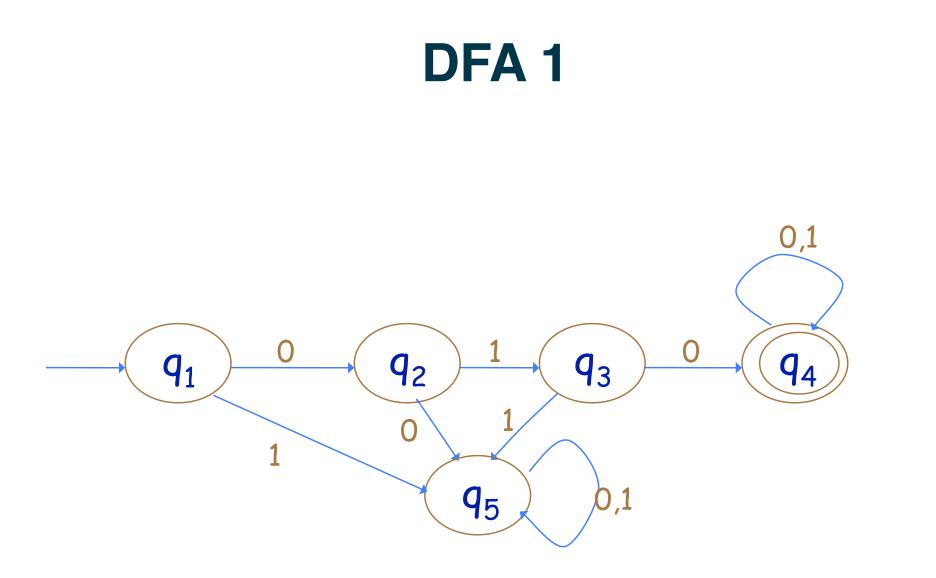
All strings of 0's and 1's beginning with a 0 and ending with a 1

Collaborative Exercises

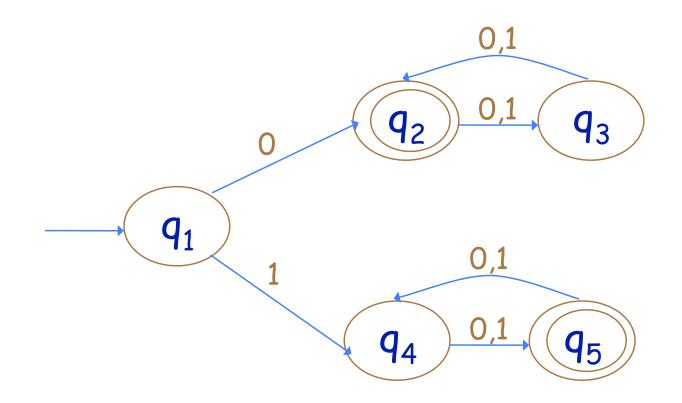
Formally describe the DFA illustrated

 $\Sigma = \{0, 1\}$

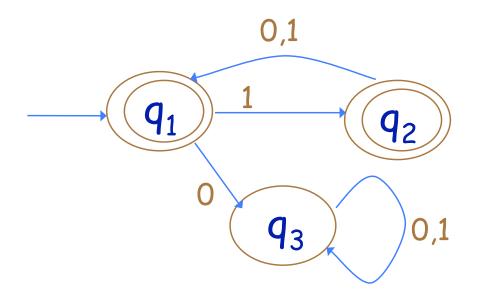
- 1. Q is a finite set called the states
- 2. Σ is a finite set called the alphabet
- 3. $\delta : \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the transition function
- 4. q_0 is the start state, and
- 5. $F \subseteq Q$ is the set of accept states (also called final states).
- Include informal description



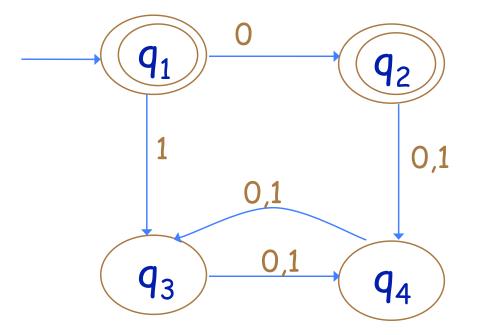
Hint: What strings doesn't this DFA accept?



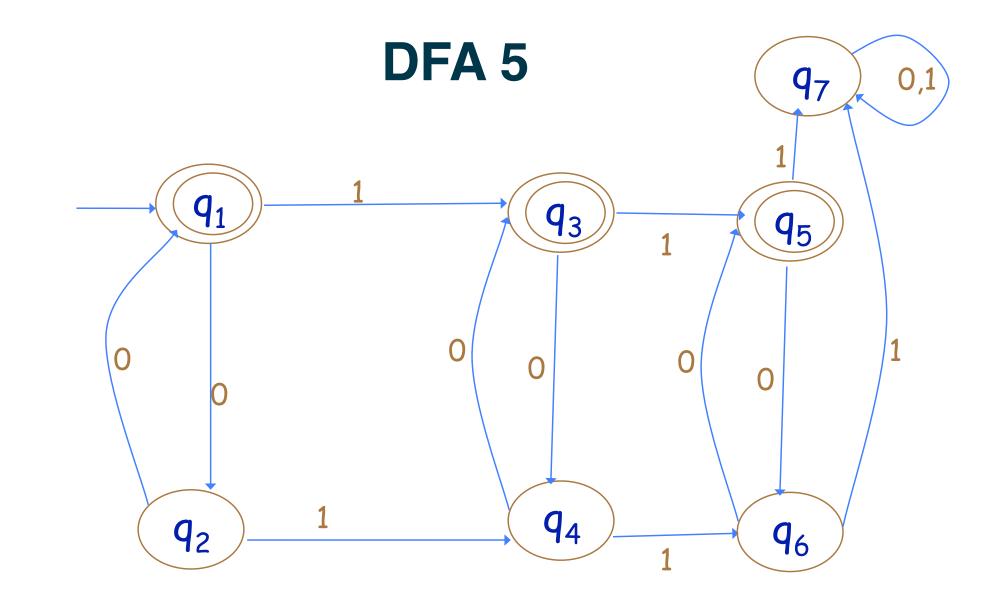
Hint: String length counts.



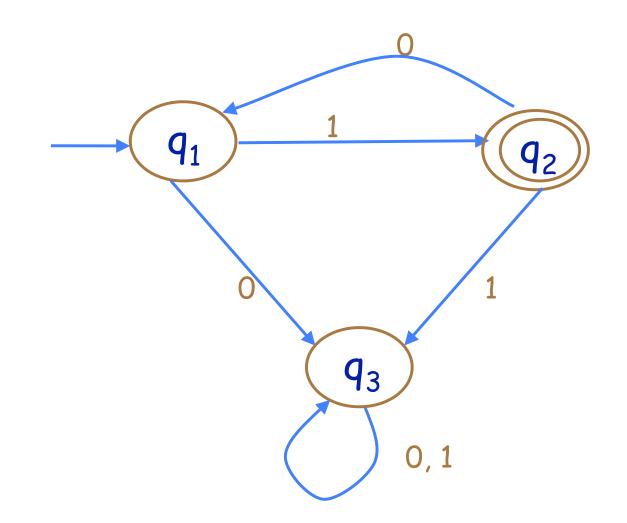
Hint: Symbol position counts.



Hint: Can you simplify this DFA?



Hint: For each state, what do you know about how many times each symbol has appeared?



Hint: What happens when you get to q_3 ?

Formalizing Computation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \dots w_n$ be any string over Σ . **M accepts w** if there is a sequence of $w_i \in \Sigma$ states r_0, r_1, \dots, r_n , of Q such that

 $-r_0 = q_0$ start in the start state

$$-\mathbf{r}_{i} = \delta(\mathbf{r}_{i-1}, \mathbf{w}_{i})$$

the transition function determines each step

- $r_n \in F$

the last state is one of the final states

Regular Languages

A deterministic finite automaton M recognizes the language A if $A = \{ w \mid M \text{ accepts } w \}$

We say A is the language of M, L(M) L(M) = { w I M accepts w }

Any language recognized by a deterministic finite automaton is called a regular language

Designing Finite Automata

- Select states specifically to reflect some important concept
 - For example...
 - even number of 0's
 - odd number of occurrences of the string 010
- Ensure this meaning is relevant to the language you are trying to define
- Try to get "in the head" of the automaton

1.Design a DFA accepting the following strings over {a}: {a}

2.Design a DFA accepting the following strings over {a}: {ε, a}

3.Design a DFA accepting the following strings over {a}: {ε, a, aa}

4.Design a DFA accepting the following strings over {a}: a*

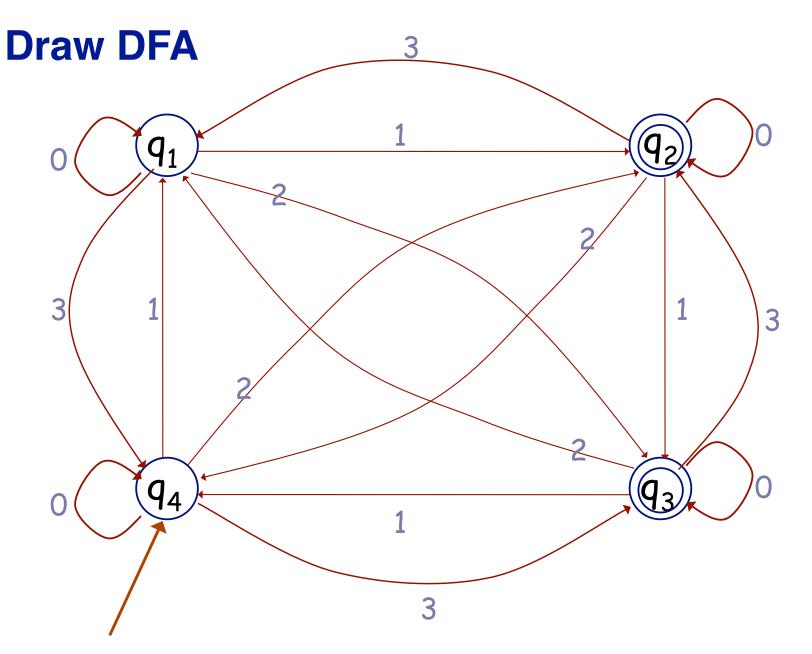
Design a DFA accepting all strings over {0,1,2,3} such that the <u>sum</u> of the symbols in the string is equivalent to 2 modulo 4 or 3 modulo 4

- What states do we need?
 - One state for each value modulo 4
 - q1 represents 1 modulo 4
 - q2 represents 2 modulo 4
 - q3 represents 3 modulo 4
 - q4 represents 0 modulo 4

Create the state transition table

	0	1	2	3
q ₁ (1 mod 4)				
q ₂ (2 mod 4)				
q ₃ (3 mod 4)				
q ₄ (0 mod 4)				

- What elements of the 5-tuple do we know? Q, Σ , and δ
- **So we still need q0 and F** q0 = q4 F = {q2, q3}



Designing Finite Automata

- Select states specifically to reflect some important concept
- Ensure this meaning is relevant to the language you are trying to define
- Try to get "in the head" of the automaton
- Can also design a DFA by combining two other DFA's

Combining Regular Languages

We can create a regular language from other regular languages *A* and *B* using specific allowable operations called regular operations

- **Union: A** \cup **B**
- Concatenation: A
 B
- Kleene star: A*

Union Is a Regular Operation

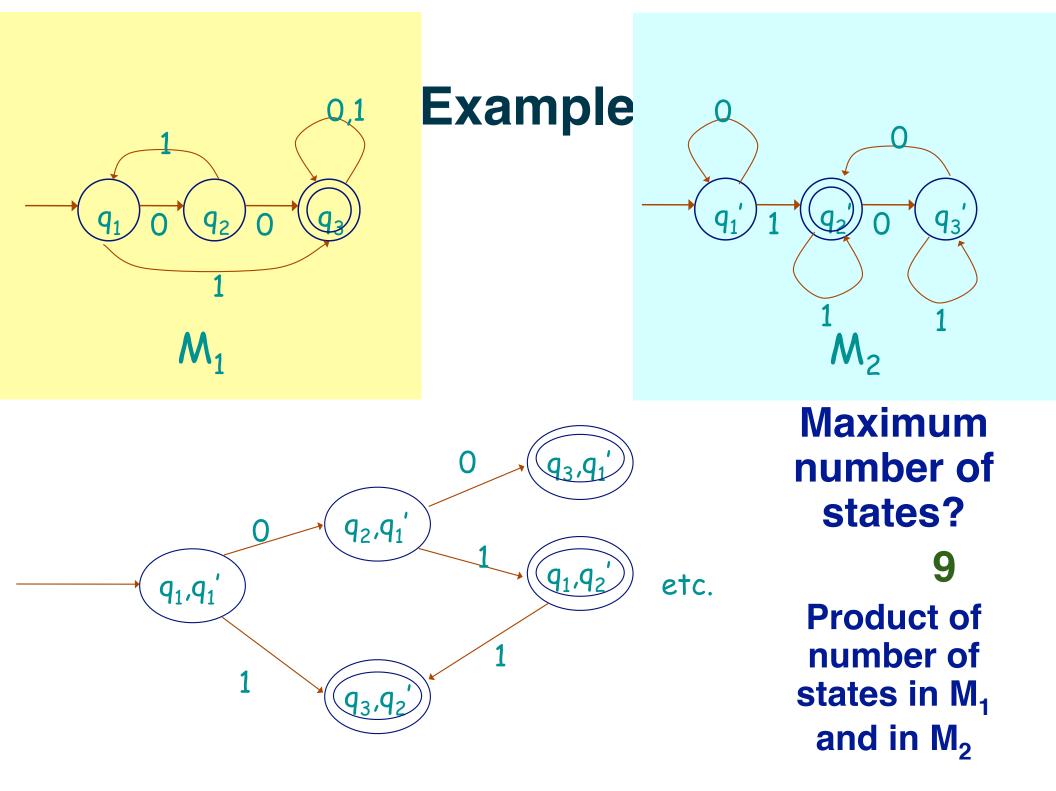
Theorem: The class of regular languages is closed under the union operation

Proof approach: Assume A_1 and A_2 are both regular languages with $A_1=L(M_1)$ and $A_2=L(M_2)$ and create a DFA M such that $L(M) = A_1 \cup A_2$

Method: Proof by construction

Construction Idea

- Each state of the new DFA represents both where the same word would be if it was being processed in M_1 and where it would be if it were processed in M_2
- Keep track of the progress of the string in both DFA's simultaneously



Union Is a Regular Operation

Theorem: The class of regular languages is closed under the union operation

Proof approach: Assume A_1 and A_2 are both regular languages with $A_1=L(M_1)$ and $A_2=L(M_2)$ and create a DFA M such that $L(M) = A_1 \cup A_2$

Method: Proof by construction

Formally defining M

- $M = (Q, \Sigma, \delta, q_0, F)$
 - $\bullet \mathbf{Q} = \mathbf{Q}_1 \times \mathbf{Q}_2$

 \mathbf{Q}_1 and \mathbf{Q}_2 are the states in machines M_1 and $M_2,$ respectively

 $\bullet \Sigma = \Sigma_1 \cup \Sigma_2$

 Σ_1 and Σ_2 are the alphabets for machines M_1 and $M_2,$ respectively

• $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

 δ_1 and δ_2 are the state transition functions for machines M_1 and M_2 , respectively

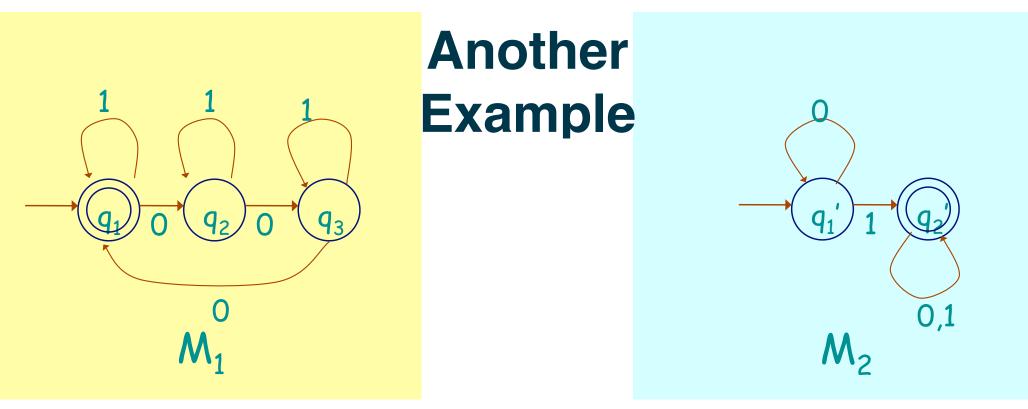
Formally defining M

- $\mathsf{M}=(\mathbf{Q},\!\boldsymbol{\Sigma},\!\boldsymbol{\delta},\!\boldsymbol{q}_0,\!\mathbf{F})$
 - $q_0 = (r_1, r_2)$

 r_1 and r_2 are the starting states in machines M_1 and M_2 , respectively

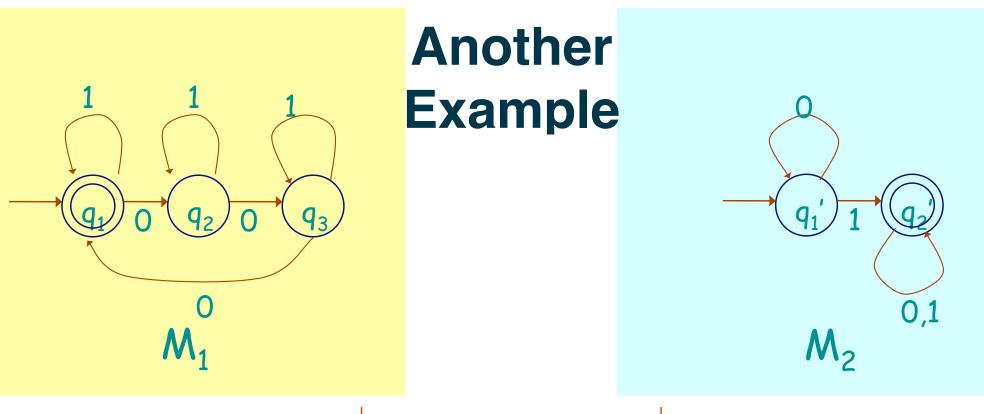
• $F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$

 F_1 and F_2 are the accepting states for machines M_1 and M_2 , respectively

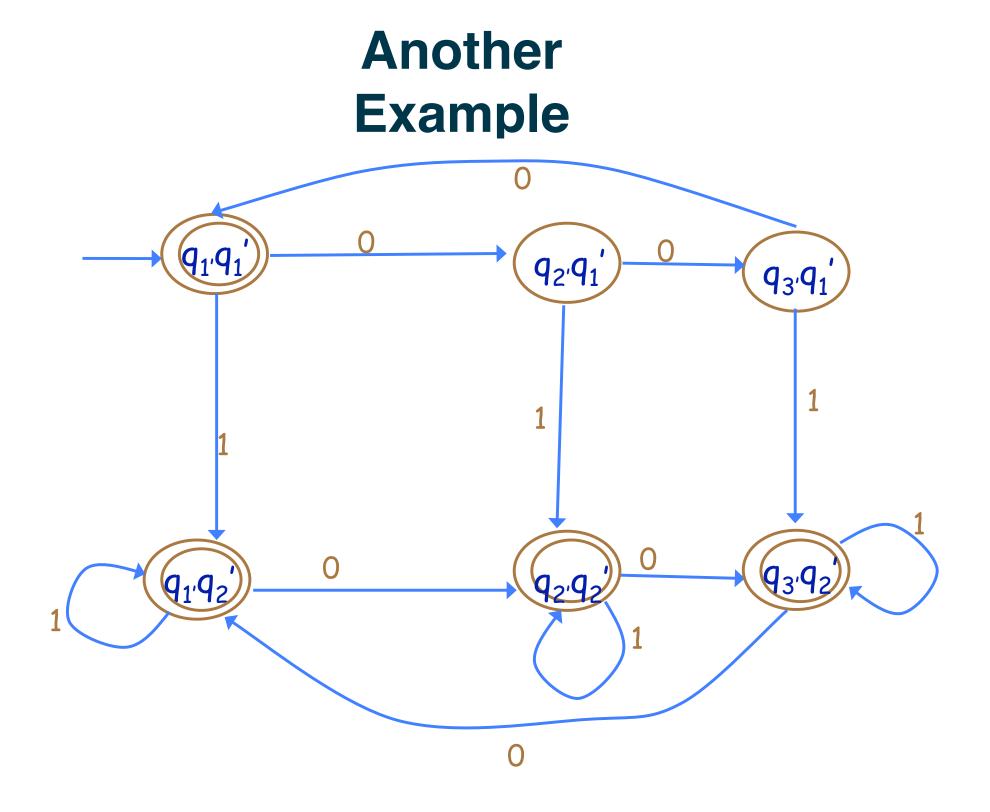


 $Q = \{(q_1, q_1'), (q_1, q_2'), (q_2, q_1'), (q_2, q_2'), (q_3, q_1'), (q_3, q_2')\}$ $\Sigma = \{0, 1\}$

- $\mathbf{q}_0 = (\mathbf{q}_1, \mathbf{q}_1')$
 - $\mathbf{F} = \{(\mathbf{q}_1, \mathbf{q}_1'), (\mathbf{q}_1, \mathbf{q}_2'), (\mathbf{q}_2, \mathbf{q}_2'), (\mathbf{q}_3, \mathbf{q}_2')\}$



δ	0	1
(q ₁ ,q ₁ ')	(q ₂ ,q ₁ ')	(q ₁ ,q ₂ ')
(q ₁ ,q ₂ ')	(q ₂ ,q ₂ ')	(q ₁ ,q ₂ ')
(q ₂ ,q ₁ ')	(q ₃ ,q ₁ ')	(q ₂ ,q ₂ ')
(q ₂ ,q ₂ ')	(q ₃ ,q ₂ ')	(q ₂ ,q ₂ ')
(q ₃ ,q ₁ ')	(q ₁ ,q ₁ ')	(q ₃ ,q ₂ ')
(q ₃ ,q ₂ ')	(q ₁ ,q ₂ ')	(q ₃ ,q ₂ ')



Concatenation is a Regular Operation

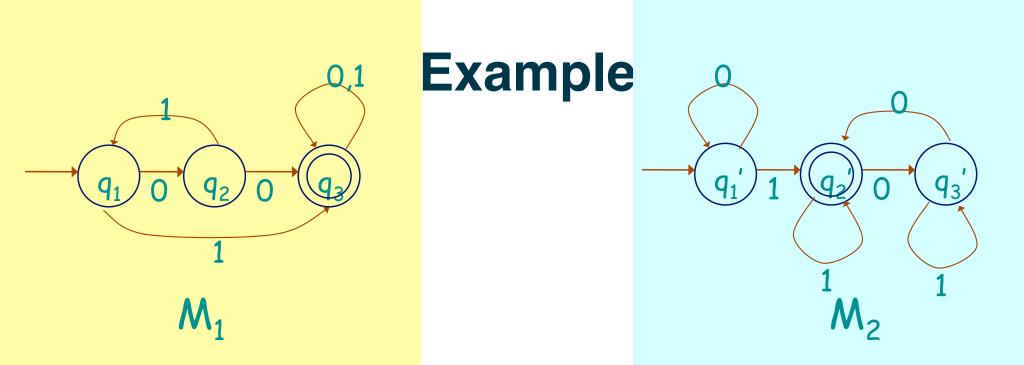
- Theorem: The class of regular languages is closed under the concatenation operation
- Proof approach: Assume A_1 and A_2 are both regular languages with $A_1=L(M_1)$ and $A_2=L(M_2)$ then create a DFA M such that $L(M) = A_1 \cdot A_2$
- Method: Proof by construction

Construction Idea

Every accepting state in M_1 has a copy of M_2 "tacked on"

Problem:

If we tack a copy of M_2 on at each accepting states, we lose the deterministic property



Find M such that $L(M) = L(M_1) \cdot L(M_2)$

