Introduction to the Theory of Computation

Set 2 - Regular Languages (1)

Languages

- Alphabet
- Finite collection of objects (denoted Σ)
- String
- Concatenation of 0 or more elements of an alphabet
- Language
- Collection of strings
$\cdot \Sigma^{*}$ is the set of all strings over Σ (including ε)

$$
\begin{array}{r}
\varepsilon \triangleq \text { the empty string } \\
\varepsilon . \operatorname{length}()==0
\end{array}
$$

Deterministic Finite Automata (DFA)

- Method for modeling computers with limited memory
- Language recognizer
- Idea
- Keep track of current state
- Events cause movement from one state to another

Next...

- Formally describe DFA's
- Interpret DFA's

Example－Combination Lock

－There are four buttons for user input B，有，（frog，car，chair，unlock）
－The lock will open if and only if the buttons are pressed in the correct order
－If the unlocking sequence is exactly length 3，there are 256 possible sequences \｛xere，，yex，化且禺，．．．\}
In general，for a sequence length k of B buttons， there are B^{k} unique sequences

Example - Combination Lock

- There are four actions
n, 朋, (push frog, car, chair, or unlock)
- The lock can be in one of these 4 states
- RESET - Ready to recognize combination
- SEEN_FIRST - First correct action
- SEEN_SECOND - First+second correct actions
- UNLOCKED - Correct action sequence

Example - Combination

State table

Event State	0	,	丽	0
reset	reset	reset	reset	seen_first
seen_first	reset	reset	seen_second	seen_first
seen_second	reset	reset	reset	unlocked
unlocked	reset	reset	reset	reset

Example - Combination 애응

| State table Event | 0 | | |
| :---: | :---: | :---: | :---: | :---: |
| State | | | |

Deterministic Finite Automaton (DFA)

 [Formal Definition]A deterministic finite automaton (DFA) is a 5 -tuple, ($\left.\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F\right)$, where
Q is a finite set called the states Σ is a finite set called the alphabet
$\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the transition function
(δ corresponds to the example state change function)

- \mathbf{q}_{0} is the start state, and
$\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept states
(also called final states).

Example

From previous example

- Q = \{Reset, Seen_First, Seen_Second, Unlocked\}

- $\delta=$ The state table we constructed
- $\mathrm{q}_{0}=$ Reset
- $\mathrm{F}=$ \{Unlocked $\}$

Q states
Σ alphabet
δ transition function
q_{0} start state
F accept states

$$
\begin{aligned}
Q & =\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
\Sigma & =\{0,1\} \\
\delta & =\ldots \text { in a moment... }
\end{aligned}
$$

$$
q_{0}=q_{1}
$$

$$
F=\left\{q_{3}\right\}
$$

State table

0
q_{2}
q_{2}
q_{2}
q_{4}
q_{4}

Informal description of the strings accepted by this DFA

All strings of 0 's and 1 's beginning with a 0 and ending with a 1

Collaborative Exercises

Formally describe the DFA illustrated

$$
\Sigma=\{0,1\}
$$

1. Q is a finite set called the states
2. Σ is a finite set called the alphabet
3. $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is the transition function
4. q_{0} is the start state, and
5. $\mathbf{F} \subseteq \mathbf{Q}$ is the set of accept states (also called final states).
Include informal description

DFA 1

Hint: What strings doesn't this DFA accept?

DFA 2

Hint: String length counts.

DFA 3

Hint: Symbol position counts.

DFA 4

Hint: Can you simplify this DFA?

DFA 5

Hint: For each state, what do you know about how many times each symbol has appeared?

DFA 6

Hint: What happens when you get to q_{3} ?

Formalizing Computation

Let $M=\left(\mathbf{Q}, \Sigma, \delta, \mathbf{q}_{0}, F\right)$ be a finite automaton and let $w=w_{1} w_{2} \ldots w_{n}$ be any string over Σ. M accepts \boldsymbol{w} if there is a sequence of $w_{i} \in \Sigma$ states $r_{0}, r_{1}, \ldots, r_{n}$, of Q such that
$-r_{0}=q_{0}$
start in the start state
$-r_{i}=\delta\left(r_{i-1}, w_{i}\right)$
the transition function determines each step
$-r_{n} \in F$ the last state is one of the final states

Regular Languages

A deterministic finite automaton M recognizes the language A if

$$
A=\{w \mid M \text { accepts } w\}
$$

We say A is the language of $M, L(M)$

$$
L(M)=\{w I M \text { accepts } w\}
$$

Any language recognized by a deterministic finite automaton is called a regular language

Designing Finite Automata

- Select states specifically to reflect some important concept
- For example...
- even number of 0's
- odd number of occurrences of the string 010
- Ensure this meaning is relevant to the language you are trying to define
-Try to get "in the head" of the automaton

Designing Finite Automata - Examples

1.Design a DFA accepting the following strings over \{a\}: \{a\}
2.Design a DFA accepting the following strings over $\{a\}:\{\varepsilon, a\}$
3.Design a DFA accepting the following strings over $\{a\}:\{\varepsilon, a, a\}$
4.Design a DFA accepting the following strings over \{a\}: a*

Designing Finite Automata - Example

 Design a DFA accepting all strings over $\{0,1,2,3\}$ such that the sum of the symbols in the string is equivalent to 2 modulo 4 or 3 modulo 4
Designing Finite Automata - Example

-What states do we need?

- One state for each value modulo 4
- q1 represents 1 modulo 4
- q2 represents 2 modulo 4
- q3 represents 3 modulo 4
- q4 represents 0 modulo 4

Designing Finite Automata - Example

 Create the state transition table| | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| $q_{1}(1 \bmod 4)$ | | | | |
| $q_{2}(2 \bmod 4)$ | | | | |
| $q_{3}(3 \bmod 4)$ | | | | |
| $q_{4}(0 \bmod 4)$ | | | | |

Designing Finite Automata - Example

What elements of the 5-tuple do we know?
Q, Σ, and δ
So we still need $q 0$ and F

$$
q 0=q 4
$$

$$
F=\{q 2, q 3\}
$$

Designing Finite Automata - Example

Designing Finite Automata

- Select states specifically to reflect some important concept
- Ensure this meaning is relevant to the language you are trying to define
- Try to get "in the head" of the automaton
- Can also design a DFA by combining two other DFA's

Combining Regular Languages

We can create a regular language from other regular languages A and B using specific allowable operations called regular operations

- Union: $A \cup B$
- Concatenation: $A \bullet B$
- Kleene star: A *

Union Is a Regular Operation

Theorem: The class of regular languages is closed under the union operation

Proof approach: Assume A_{1} and A_{2} are both regular languages with $A_{1}=L\left(M_{1}\right)$ and $A_{2}=L\left(M_{2}\right)$ and create a DFA M such that $L(M)=A_{1} \cup A_{2}$

Method: Proof by construction

Construction Idea

Each state of the new DFA represents both where the same word would be if it was being processed in M_{1} and where it would be if it were processed in M_{2}

- Keep track of the progress of the string in both DFA's simultaneously

Maximum number of states?

9

Product of number of states in \mathbf{M}_{1} and in M_{2}

Union Is a Regular Operation

Theorem: The class of regular languages is closed under the union operation

Proof approach: Assume A_{1} and A_{2} are both regular languages with $A_{1}=L\left(M_{1}\right)$ and $A_{2}=L\left(M_{2}\right)$ and create a DFA M such that $L(M)=A_{1} \cup A_{2}$

Method: Proof by construction

Formally defining M

$M=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, F\right)$

- $Q=Q_{1} \times Q_{2}$
Q_{1} and Q_{2} are the states in machines M_{1} and M_{2}, respectively
- $\Sigma=\Sigma_{1} \cup \Sigma_{2}$
Σ_{1} and Σ_{2} are the alphabets for machines M_{1} and M_{2}, respectively
- $\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)$
δ_{1} and δ_{2} are the state transition functions for machines M_{1} and M_{2}, respectively

Formally defining M

$M=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, F\right)$

- $q_{0}=\left(r_{1}, r_{2}\right)$
r_{1} and r_{2} are the starting states in machines M_{1} and M_{2}, respectively
- $F=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$
F_{1} and F_{2} are the accepting states for machines M_{1} and M_{2}, respectively

Another
 Example

$$
\begin{aligned}
\mathbf{Q} & =\left\{\left(q_{1}, q_{1}{ }^{\prime}\right),\left(q_{1}, q_{2}{ }^{\prime}\right),\left(q_{2}, q_{1}{ }^{\prime}\right),\left(q_{2}, q_{2}{ }^{\prime}\right),\left(q_{3}, q_{1}{ }^{\prime}\right),\left(q_{3}, q_{2}{ }^{\prime}\right)\right\} \\
\Sigma & =\{0,1\} \\
q_{0} & =\left(q_{1}, q_{1}{ }^{\prime}\right) \\
F & =\left\{\left(q_{1}, q_{1}{ }^{\prime}\right),\left(q_{1}, q_{2}{ }^{\prime}\right),\left(q_{2},,_{2}{ }^{\prime}\right),\left(q_{3}, q_{2}{ }^{\prime}\right)\right\}
\end{aligned}
$$

Another

δ	0	1
$\left(\mathrm{q}_{1}, \mathrm{q}_{1}{ }^{\prime}\right)$	$\left(\mathrm{q}_{2}, \mathrm{q}_{1}{ }^{\prime}\right)$	$\left(\mathrm{q}_{1}, \mathrm{q}_{2}{ }^{\prime}\right)$
$\left(\mathrm{q}_{1}, \mathrm{q}_{2}{ }^{\prime}\right)$	$\left(\mathrm{q}_{2}, \mathrm{q}_{2}{ }^{\prime}\right)$	$\left(\mathrm{q}_{1}, \mathrm{q}_{2}{ }^{\prime}\right)$
$\left(\mathrm{q}_{2}, \mathrm{q}_{1}{ }^{\prime}\right)$	$\left(\mathrm{q}_{3}, \mathrm{q}_{1}{ }^{\prime}\right)$	$\left(\mathrm{q}_{2}, \mathrm{q}_{2}{ }^{\prime}\right)$
$\left(\mathrm{q}_{2}, \mathrm{q}_{2}{ }^{\prime}\right)$	$\left(\mathrm{q}_{3}, \mathrm{q}_{2}{ }^{\prime}\right)$	$\left(\mathrm{q}_{2}, \mathrm{q}_{2}{ }^{\prime}\right)$
$\left(\mathrm{q}_{3}, \mathrm{q}_{1}{ }^{\prime}\right)$	$\left(\mathrm{q}_{1}, \mathrm{q}_{1}{ }^{\prime}\right)$	$\left(\mathrm{q}_{3}, \mathrm{q}_{2}{ }^{\prime}\right)$
$\left(\mathrm{q}_{3}, \mathrm{q}_{2}{ }^{\prime}\right)$	$\left(\mathrm{q}_{1}, \mathrm{q}_{2}{ }^{\prime}\right)$	$\left(\mathrm{q}_{3}, \mathrm{q}_{2}{ }^{\prime}\right)$

Another Example

Concatenation is a Regular Operation

Theorem: The class of regular languages is closed under the concatenation operation

Proof approach: Assume A_{1} and A_{2} are both regular languages with $A_{1}=L\left(M_{1}\right)$ and $A_{2}=L\left(M_{2}\right)$ then create a DFA M such that $L(M)=A_{1} \bullet A_{2}$
Method: Proof by construction

Construction Idea

Every accepting state in M_{1} has a copy of M_{2} "tacked on"

Problem:
If we tack a copy of M_{2} on at each accepting
states, we lose the deterministic property

Find M such that $L(M)=L\left(M_{1}\right) \cdot L\left(M_{2}\right)$

Can jump to q_{1}^{\prime} nondeterministically

