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Languages
• Alphabet

• Finite collection of objects (denoted Σ)
• String

• Concatenation of 0 or more elements of an 
alphabet

• Language
• Collection of strings

• Σ* is the set of all strings over Σ (including ε)

ε ≜ the empty string
ε.length()==0
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Deterministic Finite Automata (DFA)
• Method for modeling computers with limited 
memory
• Language recognizer

• Idea
• Keep track of current state

– Events cause movement from one state to another

 Next…
• Formally describe DFA’s
• Interpret DFA’s



Example — Combination Lock
• There are four buttons for user input
!, ", #, $  (frog, car, chair, unlock)

• The lock will open if and only if the buttons 
are pressed in the correct order

• If the unlocking sequence is exactly length 
3, there are 256 possible sequences

{!!!, !"!, #$", …}
In general, for a sequence length k of B buttons, 
there are Bk unique sequences



Example — Combination Lock
• There are four actions
!, ", #, $ (push frog, car, chair, or unlock)

• The lock can be in one of these 4 states
• RESET — Ready to recognize combination
• SEEN_FIRST — First correct action
• SEEN_SECOND — First+second correct actions
• UNLOCKED — Correct action sequence
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Example — Combination  $#$

reset reset reset reset seen_first

seen_first reset reset seen_second seen_first

seen_second reset reset reset unlocked

unlocked reset reset reset reset

Event
State

! " # $

State table
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Example — Combination  $#$

reset

seen_ 
first

seen_ 
second

unlocked

reset reset reset reset seen_first

seen_first reset reset seen_second seen_first

seen_second reset reset reset unlocked

unlocked reset reset reset reset

Event
State

! " # $State table

! "

#

$

$

!
"

#

!
"#

$

$!" #
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Deterministic Finite Automaton (DFA) 
[Formal Definition]

A deterministic finite automaton (DFA) is 
a 5-tuple,  (Q,Σ,δ,q0,F),  where
❖ Q is a finite set called the states
❖ Σ is a finite set called the alphabet
❖ δ : Q × Σ → Q is the transition function

(δ corresponds to the example state change function)
❖ q0 is the start state, and
❖ F ⊆ Q is the set of accept states 

(also called final s tates).
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Example
From previous example
• Q = 
• Σ = 
• δ =
• q0 =
• F =

{Reset, Seen_First, Seen_Second, Unlocked}
{!, ", #, $}
The state table we constructed
Reset
{Unlocked}

Q states
Σ alphabet
δ  transition function
q0 start state
 F accept states
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Another example

q1 q2 q3

0

0 1

Σ = {0,1}
1

0

q4

1

0,1

State 
control 0   0   1   1  

Input Tape

Read Head
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Another example

q1 q2 q3

0

0 1

Σ = {0,1}
1

0

 Q =  
 Σ = 
 δ = 
 q0 = 

 F =

{q1, q2, q3, q4}

{0, 1}
…in a moment…
q1

{q3}

q4

1

0,1

State 
control 0   0   1   1  

Input Tape

Read Head



Another example
Σ = {0,1}

State table 0 1
q1 q2 q4

q2 q2 q3

q3 q2 q3

q4 q4 q4

0,1

q1 q2 q3

0

0 1

1

0

q4

1
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Another example
Σ = {0,1}

Informal description of the strings 
accepted by this DFA

All strings of 0’s and 1’s beginning with a 0 
and ending with a 1

0,1

q1 q2 q3

0

0 1

1

0

q4

1
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Collaborative Exercises
Formally describe the DFA illustrated

Σ  = {0, 1}
1. Q is a finite set called the states
2. Σ is a finite set called the alphabet
3. δ : Q × Σ → Q is the transition function
4. q0 is the start state, and
5. F ⊆ Q is the set of accept states 

(also called final states).
Include informal description
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DFA 1

q1 q2 q4
10

1

0,1

0

q3
0

Hint:  What strings doesn’t this DFA accept?

q5

1
0,1
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DFA 2

q1

q2
0,1

0

0,1

q3

q4
0,1

0,1

q5

1

Hint:  String length counts.
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DFA 3

q1 q2
1

0,1

Hint:  Symbol position counts.

q3
0

0,1
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DFA 4

q1 q2
0

0,1

Hint:  Can you simplify this DFA?

q3 q4
0,1

0,11
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DFA 5

q1

q2

0

Hint:  For each state, what do you know about 
how many times each symbol has appeared?

q3

q4

0

1

1

0

q5

0

1

1

q7 0,1

1

q6

0 0
1
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DFA 6

q1

0, 1

Hint:  What happens when you get to q3?

q2

0

1

0

q3

1



Formalizing Computation
Let M = (Q,Σ,δ,q0,F) be a finite automaton 
and let w = w1w2…wn be any string over Σ.  
M accepts w if there is a sequence of 
states r0, r1, …, rn, of Q such that
– r0 = q0 

 start in the start state

– ri = δ(ri-1, wi)
 the transition function determines each step

– rn ∈ F
 the last state is one of the final states

wi ∈Σ



Regular Languages
A deterministic finite automaton M 
recognizes the language A if  

A = { w | M accepts w }

We say A is the language of M,  L(M) 
  L(M) = { w | M accepts w }

Any language recognized by a 
deterministic finite automaton is 

called a regular language



Designing Finite Automata
• Select states specifically to reflect some 
important concept
• For example…

• even number of 0’s
• odd number of occurrences of the string 010

• Ensure this meaning is relevant to the 
language you are trying to define

• Try to get “in the head” of the automaton



Designing Finite Automata – Examples
1.Design a DFA accepting the following 

strings over {a}: {a}

2.Design a DFA accepting the following 
strings over {a}: {ε, a}

3.Design a DFA accepting the following 
strings over {a}: {ε, a, aa}

4.Design a DFA accepting the following 
strings over {a}: a*



Designing Finite Automata – Example
Design a DFA accepting all strings over 
{0,1,2,3} such that the sum of the symbols 
in the string is equivalent to 2 modulo 4 or 
3 modulo 4



Designing Finite Automata – Example
• What states do we need?

• One state for each value modulo 4
• q1 represents 1 modulo 4
• q2 represents 2 modulo 4
• q3 represents 3 modulo 4
• q4 represents 0 modulo 4



Designing Finite Automata – Example
Create the state transition table

0 1 2 3

q1 (1 mod 4) q1 q2 q3 q4

q2 (2 mod 4) q2 q3 q4 q1

q3 (3 mod 4) q3 q4 q1 q2

q4 (0 mod 4) q4 q1 q2 q3



Designing Finite Automata – Example

What elements of the 5-tuple do we know?
Q, Σ, and δ

So we still need q0 and F
q0 = q4
F = {q2, q3}



Designing Finite Automata – Example

q1

q3q4

q20

0 0

01

1

1

1

2

2

2

2

3

3

3

3

Draw DFA



Designing Finite Automata
• Select states specifically to reflect some 
important concept

• Ensure this meaning is relevant to the 
language you are trying to define

• Try to get “in the head” of the automaton

• Can also design a DFA by combining two 
other DFA’s



Combining Regular Languages
We can create a regular language from 
other regular languages A and B using 
specific allowable operations called 
regular operations

• Union: A ∪ B 
• Concatenation: A ● B 
• Kleene star: A*



Union Is a Regular Operation
Theorem:  The class of regular languages is 

closed under the union operation

Proof approach:  Assume A1 and A2 are 
both regular languages with A1=L(M1) and 
A2=L(M2) and create a DFA M such that 
L(M) = A1∪A2

Method:  Proof by construction



Construction Idea
Each state of the new DFA represents both 
where the same word would be if it was 
being processed in M1 and where it would 
be if it were processed in M2

• Keep track of the progress of the string in both 
DFA’s simultaneously



Example

q1 q2 q30 0

0,1

1

1

M1

q1,q1’

q2,q1’0

q3,q2’
1

1

q1’ q2’ q3’1 0

0
0

M2

1

1

etc.

q3,q1’0

q1,q2’
1

Maximum 
number of 

states?
9 

Product of 
number of 

states in M1 
and in M2



Union Is a Regular Operation
Theorem:  The class of regular languages is 

closed under the union operation

Proof approach:  Assume A1 and A2 are 
both regular languages with A1=L(M1) and 
A2=L(M2) and create a DFA M such that 
L(M) = A1∪A2

Method:  Proof by construction



Formally defining M
M = (Q,Σ,δ,q0,F)
• Q = Q1 × Q2 

Q1 and Q2 are the states in machines M1 and M2, 
respectively

• Σ = Σ1 ∪ Σ2

Σ1 and Σ2 are the alphabets for machines M1 and M2, 
respectively

• δ((r1,r2),a) = (δ1(r1,a), δ2(r2,a))
δ1 and δ2 are the state transition functions for 
machines M1 and M2, respectively



Formally defining M
M = (Q,Σ,δ,q0,F)
• q0 = (r1, r2)

r1 and r2 are the starting states in machines M1 and 
M2, respectively

• F = {(r1,r2) | r1∈F1 or r2∈F2}
F1 and F2 are the accepting states for machines M1 
and M2, respectively



q1 q2 q30 0

1

0

1

M1

q1’ q2’1

0

M2

0,1

Another 
Example1

Q = {(q1,q1’), (q1,q2’), (q2,q1’), (q2,q2’), (q3,q1’), (q3,q2’)}

 Σ = {0,1}

q0 = (q1,q1’)

 F = {(q1,q1’), (q1,q2’), (q2,q2’), (q3,q2’)}



q1’ q2’1

0

M2

0,1

q1 q2 q30 0

1

0

1

M1

1

δ 0 1

(q1,q1’) (,) (,)
(q1,q2’) (,) (,)
(q2,q1’) (,) (,)
(q2,q2’) (,) (,)
(q3,q1’) (,) (,)
(q3,q2’) (,) (,)

(q2,)
(q2,)

(q1,)
(q1,)

(q3,)

(q3,)

(q2,)

(q2,)
(q1,)
(q1,)

(q3,)
(q3,)

(q2,q1’)

(q3,q1’)

(q1,q1’)

(q1,q2’)

(q2,q2’)

(q3,q2’)

(q2,q2’)

(q3,q2’)

(q1,q2’)

(q1,q2’)

(q2,q2’)

(q3,q2’)

Another 
Example



q1’q1’

0

0

1
1

0

0

1

q2’q1’ q3’q1’

q1’q2’ q2’q2’ q3’q2’

1

1

1
0

Another 
Example

0



Concatenation is a Regular Operation
Theorem:  The class of regular languages is 

closed under the concatenation operation
Proof approach:  Assume A1 and A2 are 

both regular languages with A1=L(M1) and 
A2=L(M2) then create a DFA M such that 
L(M) = A1•A2

Method:  Proof by construction



Construction Idea
Every accepting state in M1 has a copy of 
M2 “tacked on”

Problem: 
If we tack a copy of M2 on at each accepting 
states, we lose the deterministic property



Example

q1 q2 q30 0

0,1

1

1

M1
1

q1’ q2’ q3’1 0

0
0

M2

1

q1 q2 q30 0

0,1

1

1

1

q1’ q2’ q3’1 0

0
0

1

ε

Can jump to q1’ nondeterministically

Find M such that L(M) = L(M1) • L(M2)


