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Course Goals
Explore the capabilities and limitations of 
computers

• Automata theory
• How can we mathematically model computation?

• Computability theory
• What problems can be solved by a computer?

• Complexity theory
• What makes some problems computationally hard 

and others easy?
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History of Computation



Devices to Aid Computation
• Abacus
• aids memory

• Napier’s Bones
• dynamic logarithm tables

• Slide Rule
• Pascaline
• Jacquard Loom
• Difference Engine



Devices to Aid Computation
• Abacus
• aids memory

• Napier’s Bones
• dynamic logarithm tables

• Slide Rule
• Pascaline
• Jacquard Loom
• Difference Engine
• Hollerith Desk



• Analytic Engine (1820s)
• Turing Machine (1936)

“Can there exist, at least in principle, a 
definite method by which all mathematical 
problems can be decided”

Automated Computation



• Analytic Engine (1820s)
• Turing Machine (1936)

“Can there exist, at least in principle, a 
definite method by which all mathematical 
problems can be decided”

• Z1 Computer (1938)
• ENIAC 1 (1946)
• UNIVAC (1951)
• IBM 701 (1953)
• IBM 704 (1954)

Automated Computation



Computation
Basic Questions in Computer Science

What problems can and cannot be computed?
• Computability

If a problem can be solved, how long will it take?
• Complexity

Approach:
– Develop a formal model for a “computer”
– “Run” the problem using the model to determine 

computability and efficiency



Introduction to the  
Theory of Computation

The theory can be described using mathematics.

We will start by describing simpler machines that 
answer simpler problems… such as the string 
recognition problem.



String Recognition Problem

Given a string and a definition of a language 
as a set of strings, is the string a member of 
the language?



Formal Language Study

Three Elements:
• The language itself (set of strings)
• Mechanism for defining/generating language
• Mathematically-formal machine used to test if 

a string is in the language
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Formal Languages
• Alphabet

• Finite collection of objects (denoted Σ)
• String

• Concatenation of 0 or more elements of an 
alphabet

• Language
• Collection of strings

Σ* is the set of all strings over Σ (including ε)

ε ≜ the empty string
ε.length()==0



Alphabets, Strings, Languages
• Alphabet: any finite set (elements called symbols)

∑1 = {1,2,3}
∑2 = {α,β,γ}

• String: a sequence of symbols from a given 
alphabet
1212123
αβββαβ
• Empty string  ε  contains no symbols of the alphabet

• Language: a set of strings
A = {1,3,13,233,323}
B = {ε,ββ,βγγ}



Languages

We will look at several classes of languages:
• Each class will have its own means for 

language generation
• Each class will have its own machine model 

for string recognition
• We will progress from simpler to more 

complex languages and machines



Theory of Computation

Languages Computation

Parsers  
Compilers

Regular Expressions
Programming Languages

…

Computability Complexity
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Sets, Multisets and Sequences
• Set

• Order and repetition don’t matter
• {7,4,7,3} = {3,4,7}

• Multiset
• Order doesn’t matter, repetition does

• {7,4,7,3} = {3,4,7,7} ≠ {3,4,7}

• Sequence
• Order and repetition matter

• (7,4,7,3) ≠ (3,4,7,7)
• Finite sequence of k elements may be called a k-tuple



Examples

A={1,2}, B={2,3}, Σ={x∈N|x < 6}
• A∪B = {1,2,3}

• A∩B = {2}

• Ā = {3,4,5}

• A×B = {(1,2), (1,3), (2,2), (2,3)}

•  P (A) = {Ø, {1}, {2}, {1,2}} • Union: A∪B
• Intersection: A∩B
• Complement: Ā
• Cartesian Product: A×B

• Also called cross product

• Power set: P (A)Σ = alphabet



Graphs

Binary tree Subgraph



Directed Graphs

1
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{(2,1),(3,1),(4,3),(5,2)}



Function
Mechanism associating each input value 
with exactly one output value

• Domain: set of all possible input values
• Range: set containing all possible output 

values
ƒ : D → R

n ƒ(n)

1
2
3
4

2
4
2
4

ƒ : {1, 2, 3, 4} → {2, 4}

ƒ : {1, 2, 3, 4} → {1, 2, 3, 4}



Relation
• Predicate: function whose output value is 

always either true or false

• Relation: predicate whose domain is the 
set A×A×…×A
• If domain is all k‑tuples of A, the relation is 

a k‑ary relation on A
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Relation on A
Function R:A×A×…×A→{true, false}
 Often described in terms of the set of elements 

for which the relation is true

Example
 A={1,2,3,4,5}
 R:A×A×A→{true, false}

 R is true if the three-tuple is increasing

 {(1,2,3),(1,2,4),(2,3,4),(3,4,5)} ⊂ R
 (1,1,5) ∉ R
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Graphical Representation 
(Binary Relations Only)

Directed graph with edge (a,b) if (a,b)∈R
Example: 
    A={a,b,c,d}, R=“earlier in alphabet”
 R={(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}

a

c

b

d
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Equivalence Relation
• Reflexive

• {(a,a) | a ∈ A} ⊆ R
• Symmetric

• (a,b) ∈ R ⇒ (b,a) ∈ R
• Transitive

• (a,b) ∈ R ∧ (b,c) ∈ R  ⇒  (a,c) ∈ R
• Examples

• Equality
• “Has the same eye color”



Boolean Logic
• Conjunction (and) ∧
• Disjunction (or) ∨
• Negation (not) ¬
• Exclusive or (xor) ⊗
• Equality ↔
• Implication →



Proof Techniques
• Construction (Direct)

• Prove a “there exists” statement by finding an 
object that exists

• Contradiction
• Assume the opposite and find a contradiction

• Induction
• Show true for a base case and show that if the 

property holds for the value k, then it must also 
hold for the value k + 1


