
 
Introduction to the  

Theory of Computation

Set 1

Course Goals
Explore the capabilities and limitations of
computers

• Automata theory
• How can we mathematically model computation?

• Computability theory
• What problems can be solved by a computer?

• Complexity theory
• What makes some problems computationally hard

and others easy?

 
Introduction to the  

Theory of Computation
History of Computation

Devices to Aid Computation
• Abacus
• aids memory

• Napier’s Bones
• dynamic logarithm tables

• Slide Rule
• Pascaline
• Jacquard Loom
• Difference Engine

Devices to Aid Computation
• Abacus
• aids memory

• Napier’s Bones
• dynamic logarithm tables

• Slide Rule
• Pascaline
• Jacquard Loom
• Difference Engine
• Hollerith Desk

• Analytic Engine (1820s)
• Turing Machine (1936)

“Can there exist, at least in principle, a
definite method by which all mathematical
problems can be decided”

Automated Computation

• Analytic Engine (1820s)
• Turing Machine (1936)

“Can there exist, at least in principle, a
definite method by which all mathematical
problems can be decided”

• Z1 Computer (1938)
• ENIAC 1 (1946)
• UNIVAC (1951)
• IBM 701 (1953)
• IBM 704 (1954)

Automated Computation

Computation
Basic Questions in Computer Science

What problems can and cannot be computed?
• Computability

If a problem can be solved, how long will it take?
• Complexity

Approach:
– Develop a formal model for a “computer”
– “Run” the problem using the model to determine

computability and efficiency

Introduction to the  
Theory of Computation

The theory can be described using mathematics.

We will start by describing simpler machines that
answer simpler problems… such as the string
recognition problem.

String Recognition Problem

Given a string and a definition of a language
as a set of strings, is the string a member of
the language?

Formal Language Study

Three Elements:
• The language itself (set of strings)
• Mechanism for defining/generating language
• Mathematically-formal machine used to test if

a string is in the language

10

Formal Languages
• Alphabet

• Finite collection of objects (denoted Σ)
• String

• Concatenation of 0 or more elements of an
alphabet

• Language
• Collection of strings

Σ* is the set of all strings over Σ (including ε)

ε ≜ the empty string
ε.length()==0

Alphabets, Strings, Languages
• Alphabet: any finite set (elements called symbols)

∑1 = {1,2,3}
∑2 = {α,β,γ}

• String: a sequence of symbols from a given
alphabet
1212123
αβββαβ
• Empty string ε contains no symbols of the alphabet

• Language: a set of strings
A = {1,3,13,233,323}
B = {ε,ββ,βγγ}

Languages

We will look at several classes of languages:
• Each class will have its own means for

language generation
• Each class will have its own machine model

for string recognition
• We will progress from simpler to more

complex languages and machines

Theory of Computation

Languages Computation

Parsers  
Compilers

Regular Expressions
Programming Languages

…

Computability Complexity

 
Introduction to the  

Theory of Computation
Review of Prerequisite Concepts

Set 1a

Sets, Multisets and Sequences
• Set

• Order and repetition don’t matter
• {7,4,7,3} = {3,4,7}

• Multiset
• Order doesn’t matter, repetition does

• {7,4,7,3} = {3,4,7,7} ≠ {3,4,7}

• Sequence
• Order and repetition matter

• (7,4,7,3) ≠ (3,4,7,7)
• Finite sequence of k elements may be called a k-tuple

Examples

A={1,2}, B={2,3}, Σ={x∈N|x < 6}
• A∪B = {1,2,3}

• A∩B = {2}

• Ā = {3,4,5}

• A×B = {(1,2), (1,3), (2,2), (2,3)}

• P (A) = {Ø, {1}, {2}, {1,2}} • Union: A∪B
• Intersection: A∩B
• Complement: Ā
• Cartesian Product: A×B

• Also called cross product

• Power set: P (A)Σ = alphabet

Graphs

Binary tree Subgraph

Directed Graphs

1

5

43

2

{(2,1),(3,1),(4,3),(5,2)}

Function
Mechanism associating each input value
with exactly one output value

• Domain: set of all possible input values
• Range: set containing all possible output

values
ƒ : D → R

n ƒ(n)

1
2
3
4

2
4
2
4

ƒ : {1, 2, 3, 4} → {2, 4}

ƒ : {1, 2, 3, 4} → {1, 2, 3, 4}

Relation
• Predicate: function whose output value is

always either true or false

• Relation: predicate whose domain is the
set A×A×…×A
• If domain is all k‑tuples of A, the relation is

a k‑ary relation on A

25

Relation on A
Function R:A×A×…×A→{true, false}
 Often described in terms of the set of elements

for which the relation is true

Example
 A={1,2,3,4,5}
 R:A×A×A→{true, false}

 R is true if the three-tuple is increasing

 {(1,2,3),(1,2,4),(2,3,4),(3,4,5)} ⊂ R
 (1,1,5) ∉ R

26

Graphical Representation
(Binary Relations Only)

Directed graph with edge (a,b) if (a,b)∈R
Example: 
 A={a,b,c,d}, R=“earlier in alphabet”
 R={(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}

a

c

b

d

27

Equivalence Relation
• Reflexive

• {(a,a) | a ∈ A} ⊆ R
• Symmetric

• (a,b) ∈ R ⇒ (b,a) ∈ R
• Transitive

• (a,b) ∈ R ∧ (b,c) ∈ R ⇒ (a,c) ∈ R
• Examples

• Equality
• “Has the same eye color”

Boolean Logic
• Conjunction (and) ∧
• Disjunction (or) ∨
• Negation (not) ¬
• Exclusive or (xor) ⊗
• Equality ↔
• Implication →

Proof Techniques
• Construction (Direct)

• Prove a “there exists” statement by finding an
object that exists

• Contradiction
• Assume the opposite and find a contradiction

• Induction
• Show true for a base case and show that if the

property holds for the value k, then it must also
hold for the value k + 1

