Introduction to the Theory of Computation

Set 1

Course Goals

Explore the capabilities and limitations of computers

- Automata theory
 - How can we mathematically model computation?
- Computability theory
 - What problems can be solved by a computer?
- Complexity theory
 - What makes some problems computationally hard and others easy?

Introduction to the Theory of Computation History of Computation

Devices to Aid Computation

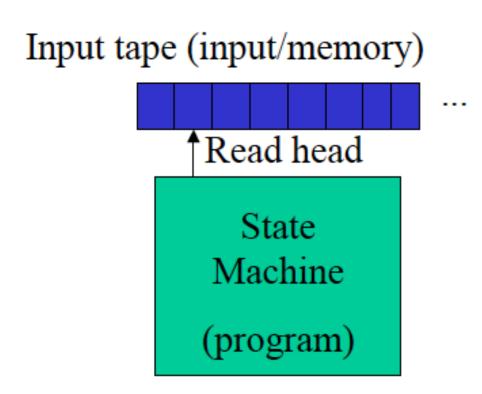
- Abacus
 - aids memory
- Napier's Bones
 - dynamic logarithm
- Slide Rule
- Pascaline
- Jacquard Loom
- Difference Engine

Devices to Aid Computation

- Abacus
 - aids memory
- Napier's Bones
 - dynamic loga
- Slide Rule
- Pascaline
- Jacquard Loo
- Difference Englise
- Hollerith Desk

Automated Computation

- Analytic Engine (1820s)
- Turing Machine (1936)



- Tape that holds character string
- Tape head that reads and writes character
- Machine that changes state based on what is read in

Automated Computation

- Analytic Engine (1820s)
- Turing Machine (1936)

"Can there exist, at least in principle, a definite method by which all mathematical problems can be decided"

- Z1 Computer (1938)
- ENIAC 1 (1946)
- UNIVAC (1951)
- •IBM 701 (1953)
- •IBM 704 (1954)

Computation

Basic Questions in Computer Science

What problems can and cannot be computed?

Computability

If a problem can be solved, how long will it take?

Complexity

Approach:

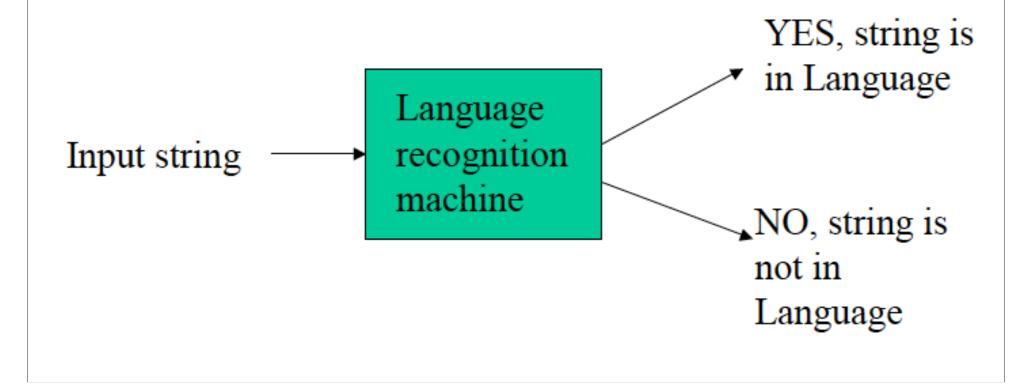
- Develop a formal model for a "computer"
- "Run" the problem using the model to determine computability and efficiency

Introduction to the Theory of Computation

The theory can be described using mathematics.

We will start by describing simpler machines that answer simpler problems... such as the *string recognition problem*.

Given a string and a definition of a language as a set of strings, is the string a member of the language?



Formal Language Study

Three Elements:

- The language itself (set of strings)
- Mechanism for defining/generating language
- Mathematically-formal machine used to test if a string is in the language

Formal Languages

- Alphabet
 - Finite collection of objects (denoted Σ)
- String
 - Concatenation of 0 or more elements of an alphabet
- Language
 - Collection of strings

 Σ^{\star} is the set of all strings over Σ (including $\epsilon)$

 $\epsilon \triangleq$ the empty string

E.length()==0

Alphabets, Strings, Languages

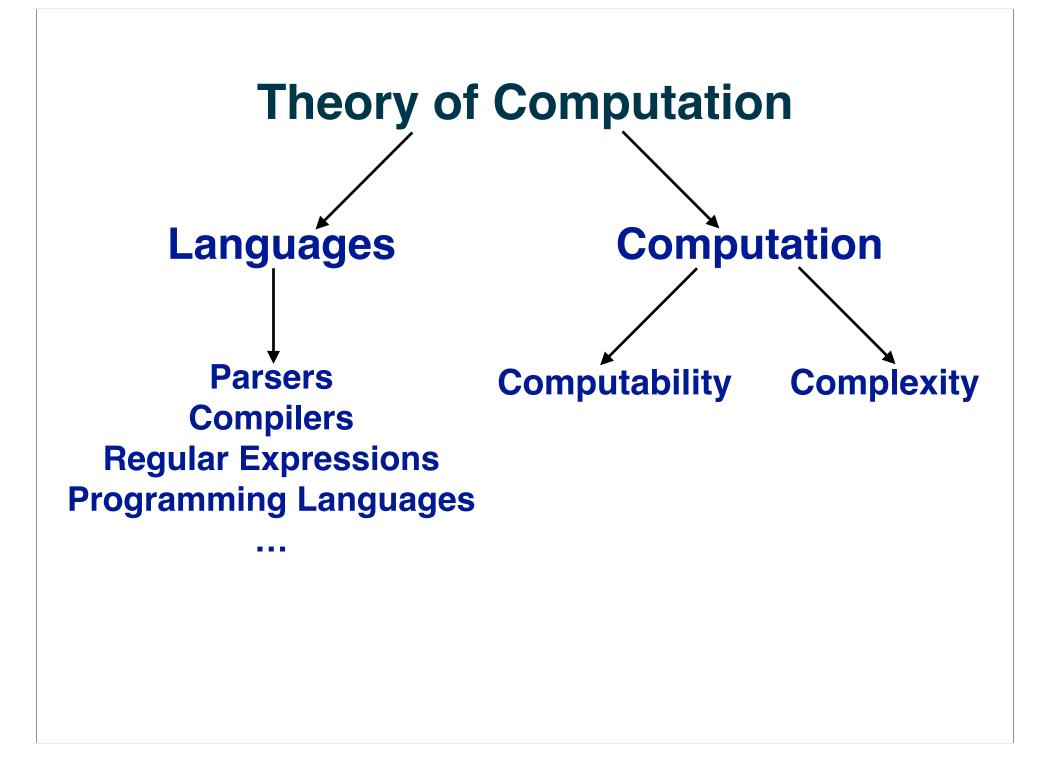
- Alphabet: any finite set (elements called symbols)
 ∑₁ = {1,2,3}
 - $\sum_{\mathbf{2}} = \{\alpha, \beta, \gamma\}$
- String: a sequence of symbols from a given alphabet
 - 1212123
 - αβββαβ
 - Empty string ϵ contains no symbols of the alphabet
- Language: a set of strings

 A = {1,3,13,233,323}
 B = {ε,ββ,βγγ}

Languages

We will look at several classes of languages:

- Each class will have its own means for language generation
- Each class will have its own machine model for string recognition
- We will progress from simpler to more complex languages and machines



Introduction to the Theory of Computation

Review of Prerequisite Concepts

Set 1a

Sets, Multisets and Sequences

• Set

Order and repetition don't matter

• $\{7,4,7,3\} = \{3,4,7\}$

Multiset

Order doesn't matter, repetition does

• $\{7,4,7,3\} = \{3,4,7,7\} \neq \{3,4,7\}$

Sequence

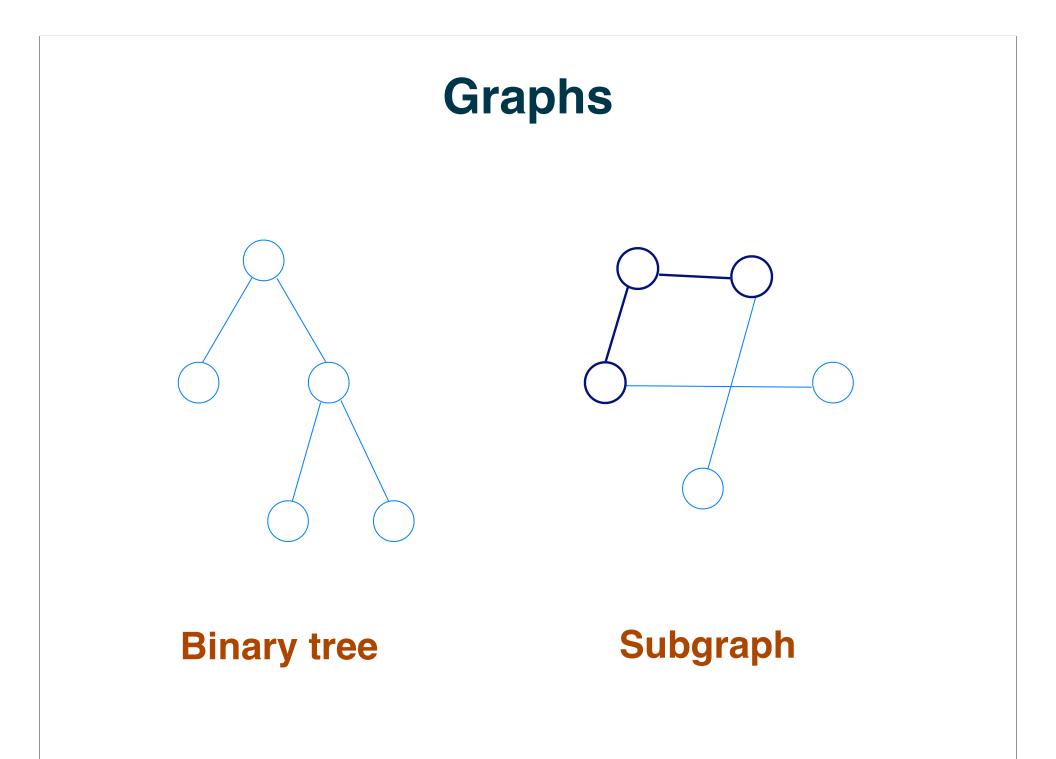
- Order and repetition matter
 - (7,4,7,3) ≠ (3,4,7,7)
 - Finite sequence of k elements may be called a k-tuple

Examples

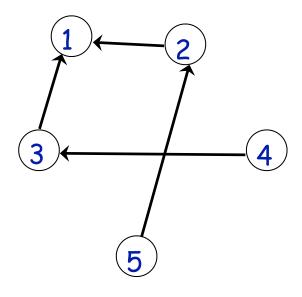
A={1,2}, B={2,3}, Σ={x∈ℕ|x < 6}

- A∪B = {1,2,3}
- A∩B = {2}
- Ā = {3,4,5}
- A×B = {(1,2), (1,3), (2,2), (2,3)}
- $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- **Union: A**U**B**
- Intersection: $A \cap B$
- Complement: Ā
- Cartesian Product: A×B
 - Also called cross product
- Power set: $\mathcal{P}(\mathbf{A})$

 Σ = alphabet



Directed Graphs



$\{(2,1),(3,1),(4,3),(5,2)\}$

Function

Mechanism associating each input value with exactly one output value

Domain: set of all possible input values

 $\mathbf{n} + \mathbf{f}(\mathbf{n})$

Range: set containing all possible output values

$$f: \mathsf{D} \to \mathsf{R}$$

	J(")	
1	2	$f: \{1, 2, 3, 4\} \rightarrow \{2, 4\}$
2	4	$f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$
1 2 3	2	
4	4	

Relation

- Predicate: function whose output value is
 always either TRUE or FALSE
- Relation: predicate whose domain is the set A×A×...×A
 - If domain is all k-tuples of A, the relation is a *k-ary relation on A*

Relation on A

Function R:A×A×…×A→{TRUE, FALSE}

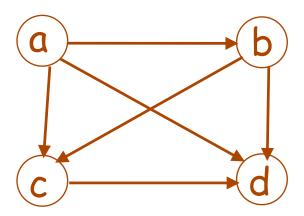
Often described in terms of the set of elements for which the relation is TRUE

Example

A={1,2,3,4,5}

R:A×A×A→{TRUE, FALSE}

R is TRUE if the three-tuple is increasing $\{(1,2,3),(1,2,4),(2,3,4),(3,4,5)\} \subset \mathbb{R}$ $(1,1,5) \notin \mathbb{R}$ Graphical Representation (Binary Relations Only) Directed graph with edge (a,b) if (a,b)∈R Example: A={a,b,c,d}, R="earlier in alphabet" R={(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)}



Equivalence Relation

- Reflexive
 - {(a,a) $I a \in A$ } $\subseteq R$
- Symmetric
 - (a,b) \in R \Rightarrow (b,a) \in R
- Transitive
 - (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R
- Examples
 - Equality
 - "Has the same eye color"

Boolean Logic

- Conjunction (AND)
- Disjunction (OR) v
- Negation (NOT) ¬
- Exclusive or (XOR) \otimes
- Equality ↔
- Implication →

Proof Techniques

- Construction (Direct)
 - Prove a "there exists" statement by finding an object that exists
- Contradiction
 - Assume the opposite and find a contradiction

Induction

 Show true for a base case and show that if the property holds for the value k, then it must also hold for the value k + 1